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Role of calcium desensitization in the treatment
of myocardial dysfunction after deep
hypothermic circulatory arrest

Alessio Rungatscher'”, Seth Hallstrom?, Alice Giacomazzi', Daniele Linardi', Elisabetta Milani', Maddalena Tessari',
Giovanni Battista Luciani’, Tiziano M Scarabelli®, Alessandro Mazzucco' and Giuseppe Faggian'

Abstract

after rewarming from DHCA.

at different preloads with a conductance catheter.

remained unchanged with levosimendan.

Introduction: Rewarming from deep hypothermic circulatory arrest (DHCA) produces calcium desensitization by
troponin | (cTnl) phosphorylation which results in myocardial dysfunction. This study investigated the acute overall
hemodynamic and metabolic effects of epinephrine and levosimendan, a calcium sensitizer, on myocardial function

Methods: Forty male Wistar rats (400 to 500 g) underwent cardiopulmonary bypass (CPB) through central cannulation
and were cooled to a core temperature of 13°C to 15°C within 30 minutes. After DHCA (20 minutes) and CPB-assisted
rewarming (60 minutes) rats were randomly assigned to 60 minute intravenous infusion with levosimendan (0.2 ug/kg/
min; n = 15), epinephrine (0.1 pg/kg/min; n = 15) or saline (control; n = 10). Systolic and diastolic functions were evaluated

Results: The slope of left ventricular end-systolic pressure volume relationship (Ees) and preload recruitable stroke work
(PRSW) recovered significantly better with levosimendan compared to epinephrine (Ees: 85 + 9% vs 51 + 11%, P<0.003
and PRSW: 78 + 5% vs 48 + 8%, P<0.005; baseline: 100%). Levosimendan but not epinephrine reduced left ventricular
stiffness shown by the end-diastolic pressure-volume relationship and improved ventricular relaxation (Tau). Levosimendan
preserved ATP myocardial content as well as energy charge and reduced plasma lactate concentrations. In normothermia
experiments epinephrine in contrast to Levosimendan increased cTnl phosphorylation 3.5-fold. After rewarming from
DHCA, cTnl phosphorylation increased 4.5-fold in the saline and epinephrine group compared to normothermia but

Conclusions: Levosimendan due to prevention of calcium desensitization by cTnl phosphorylation is more effective than
epinephrine for treatment of myocardial dysfunction after rewarming from DHCA.

Introduction

Deep hypothermic circulatory arrest (DHCA) is widely
used during repair of the aortic arch and congenital
heart defects as a method of cerebral protection. How-
ever, the effect of myocardial ischemia-reperfusion injury
combined with hypothermia-rewarming has important
clinical implications and remains a significant contribu-
tor to perioperative morbidity and mortality [1].
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Hypotension and low cardiac output are common after
rewarming and up to 50 to 80% of patients have hemo-
dynamic instability [2].

Because of the limited knowledge of the pathophysi-
ology of hypothermia- and rewarming-induced cardiac
dysfunction either in the setting of cardiac surgical inter-
vention or in accidental hypothermia, guidelines for
pharmacological treatment are missing [3]. Among the
mechanisms underlying cardiac dysfunction after hypo-
thermia-rewarming, a pivotal role has been assigned to
Ca®* overload and the paradoxical myofilaments Ca**
desensitization. Ca**-dependent interactions among myofil-
ament regulatory proteins primarily control cardiac muscle
contraction. Among them, troponin and tropomyosin

© 2013 Rungatscher et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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confer not only Ca®" sensitivity to contraction, but also
modulation by phosphorylation of troponin I (cTnl) [4].
The latter represents a well-established mechanism for
decreased myofilament Ca* sensitivity and could be medi-
ated by phosphokinase A activated by -adrenergic stimula-
tion [5].

Thus, agents that target the regulatory apparatus by
increasing the calcium sensitivity without deleterious
effects on the intracellular calcium concentration or
oxygen consumption are useful in the treatment of
cardiac dysfunction. Epinephrine is currently used in the
treatment of hypothermia-induced cardiac dysfunction
[6]. However, the efficacy of epinephrine in this setting
has been questioned [7-9].

Agents that exert a positive-inotropic effect, by directly
acting on thin filament regulatory proteins or on cross-
bridge cycling, are commonly referred to as calcium
sensitizers. Among them, levosimendan, in contrast to
epinephrine, improves ventricular function without in-
creasing oxygen demand [10]. We previously demonstra-
ted that levosimendan compared to epinephrine has
better inotropic and lusitropic effects when adminis-
trated during rewarming from DHCA [11].

The present study was designed to investigate treat-
ment with levosimendan or epinephrine after rewarm-
ing from DHCA when acute myocardial dysfunction
represents a clinical problem. We aimed to investigate
the effects of levosimendan and epinephrine on cal-
cium desensitization mediated by cTnl phospho-
rylation. Moreover, we purposed to evaluate the acute
overall hemodynamic, biochemical and metabolic effects
of the two pharmacologic agents after rewarming
from DHCA.

Methods

The Institutional Animal Care and Use Committee of
the University Animal Research Laboratory approved
this study. All animals received standardized care in
accordance with the National Institute of Health Guide-
lines. Adult male Wistar rats (400 to 450 g, Harlan, Udine,
Italy) were used for all experiments.

Animal preparation

Rats were anesthetized with 5% isoflurane in 50% O, in
a plastic induction box. After orotracheal intubation
with a 14G cannula, the animals were mechanically
ventilated (Harvard Model 687, Harvard Apparatus,
Holliston, MA, USA). The tidal volume was 7 ml/kg and
the respiratory rate was 50 to 60 breaths/minute with an
air-oxygen mixture (FiO2=0.5). Ventilation was adjus-
ted to keep an arterial carbon dioxide tension (PaCO,)
of 35 to 45 mm Hg. Anesthesia was maintained with iso-
flurane 2% and pancuronium-bromide (2 mg/kg iv) was
administered for complete muscle relaxation. Adequate
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anesthesia was monitored by the withdrawal response to
a paw pinch and respiration monitoring. Rats were
secured supine on a heating board. ECG was monitored
using limb leads. A thermocouple microprobe was
inserted into the left femoral artery and advanced into
the descending aorta for the measurement of blood
temperature. The left femoral artery was cannulated with
a heparinized 24-G Teflon catheter to monitor systemic
arterial pressure and to collect arterial blood for lactate
and gas analysis.

Cardiopulmonary Bypass (CPB) model

Central cannulation was performed as previously described
[12]. In brief, after complete sternotomy, a venous cannula
(a modified four-hole 16 gauge Angiocath catheter, Delta
Med, New York City, NY, USA) was advanced into the
right atrium using a right trans-superior vena cava
approach, allowing excellent drainage. The left common
carotid artery was cannulated using an 18-gauge catheter
advanced to the aortic arch and connected to the arterial
perfusion line for the CPB circuit. Full heparinization
(500 IU/kg) was assured after surgical preparation and
immediately before CPB initiation.

CPB was set up as previously described [12]. The setup
consisted of a venous reservoir, a roller pump, a hollow-
fiber oxygenator (Sorin, Mirandola, Italy), and a vacuum
regulator with an applied pressure of 30 mmH,O to
facilitate venous drainage, all connected by 1.6 mm
internal diameter plastic tubing. Total priming volume
was 9.5 mL, the gas exchange surface was 450 cm? and
the heat exchange surface was 15.8 cm?.

Study design

CPB was instituted at a flow rate of 120 mL/kg/min. A
core temperature of 15°C to 13°C was achieved over
30 minutes using CPB-assisted cooling. The roller pump
was turned off and DHCA, as confirmed by asystole and
lack of measurable mean arterial pressure, was main-
tained for 20 minutes at 13°C to 15°C.

With the reinstitution of CPB, rewarming started at a
flow rate of 100 mL/kg/min. CPB inflow rate was gradually
increased, reaching the full rate of 120 mL/kg/min at the
end of rewarming at 36°C in a period of 60 minutes. The
temperature gradient between the CPB circuit and body
core did not exceed 10°C. After full rewarming, the
remaining priming volume was reinfused and animals were
weaned from CPB (T1). Then animals were randomly
assigned to treatment with levosimendan (0.2 pg/kg/min)
or epinephrine (0.1 pg/kg/min) or saline as control. Infu-
sion started immediately after hemodynamic recording and
blood sampling post-weaning from CPB (T1) and lasted
for 60 minutes in normothermia at 36°C to 37°C (End-
point = T2).
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Hemodynamic analysis

Hemodynamic parameters were collected continuously
during the experiments with a 2 F micro-tip pressure-
volume conductance catheter (SPR-838; Millar Instru-
ments, Inc., Houston, TX, USA) inserted into the right
carotid artery and advanced into the left ventricle.
Signals were continuously recorded at a sampling rate of
1,000 samples/s using a P-V conductance system (MPVS-
400; Millar Instruments, Inc.), stored, and displayed on a
personal computer by the PowerLab Chart5 Software
System (AD Instruments, Colorado Springs, CO, USA).
With the use of a special pressure-volume analysis pro-
gram (PVAN; Millar Instruments, Inc.), heart rate (HR),
mean arterial pressure (MAP), maximal slope of the
systolic pressure increment (+dP/dt) and the diastolic
pressure decrement (-dP/dt), and time constant of left
ventricular pressure decay (Tau, according to the Weiss
method) were computed and calculated. Stroke volume
(SV) and cardiac output (CO) were calculated and cor-
rected according to in vitro and in vivo volume calibra-
tions using PVAN software [13].

In addition to the above parameters, left ventricle
pressure-volume relations were measured by transiently
occluding the inferior vena cava (reducing preload)
under the diaphragm by tying a snare suture around the
vein at baseline condition (T0), after CPB weaning (T1)
and at the end of 60 minutes of infusion treatment
(T2) [13].

Biochemical analysis

After euthanasia with a potassium bolus freeze-clamped
left ventricle myocardial biopsies were snap-frozen. In
particular, the tip of the freeze-clamp tong was pre-
cooled in liquid nitrogen prior to taking the biopsies and
thereafter the samples were stored at —-80°C (protein
isolation from tissue extracts) or in liquid nitrogen
(high energy phosphates) until analysis.

For Western blot analysis of c¢Tnl phosphorylation,
cardiac specimens were pulverized in liquid nitrogen
and homogenized in ice-cold lyses buffer (20 mM Hepes,
420 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40,
20% glycerol) containing a protease inhibitor cocktail
(Roche Diagnostics, Monza, Italy) and a phosphatase in-
hibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA).

The homogenates were centrifuged (12,000 rpm) for
30 minutes at 4°C, supernatants were recovered, snap-
frozen in liquid nitrogen and stored at -80°C. Total
protein content was determined with the Bradford
method. Equal amounts of each sample were fraction-
ated on 10% polyacrylamide gels by SDS-PAGE and
transferred to polyvinylidene difluoride membranes
(Millipore, Bedford, MA, USA). Membranes were blocked
with 5% BSA (Albumin from Bovine Serum, Sigma-
Aldrich) in TBS-0.1% Tween20, and incubated overnight
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with specific primary antibodies for either phospho-cTnl
(Ser23/24) (1:1,000, Cell Signaling Technology, Danvers,
MA, USA) or total cTnl (1:1,000, Cell Signaling Technol-
ogy) at 4°C. A horseradish peroxidase conjugated secondary
antibody (Amersham Biosciences, GE Healthcare Europe,
Munich, Germany) was used to detect the blots by stand-
ard chemiluminescence substrate (LiteAblot PLUS reagent,
Euroclone, Siziano, Italy) on Kodak films (Carestream
Health Inc., Rochester, NY, USA). Bands were quantified by
Image] software (National Institutes of Health, Bethesda,
MD, USA).

For energy status determination, the sample prepar-
ation and high-performance liquid chromatography
(HPLC) measurement of ATP, ADP, AMP and phospho-
creatine, as well as hypoxanthine and xanthine, were
performed as previously described [12]. A piece of fro-
zen tissue (50 to 100 mg) was homogenized with a
micro-dismembranator and deproteinized with 400 pL
of 0.4 mol/L perchloric acid. After centrifugation
(12,000 g), 150 pL of the acid extract was neutralized
with 15 to 20 uL of 2 mol/L potassium carbonate (4°C).
The supernatant (20 pL injection volume), obtained after
centrifugation, was used for HPLC analysis. The pellets
of the acid extract are dissolved in 1 mL of 0.1 mol/L
sodium hydroxide and further diluted 1:10 with physio-
logical saline for protein determination (BCA Protein
Assay, Pierce; Pierce Biotechnology, Rockford, IL, USA).
High energy phosphates (ATP, ADP, AMP and phospho-
creatine), hypoxanthine and xanthine were measured by
HPLC as previously described [14]. In brief, separation was
performed on a Hypersil ODS column (5 um, 250 x 4 mm
LD.) using an L-2200 autosampler, two L-2130 HTA pumps
and an L-2450 diode array detector (all: VWR Hitachi,
VWR, Vienna, Austria). Detector signals (absorbance at
214 and 254 nm) were recorded, and program EZchrom
Elite (VWR) was used for data requisition and analysis.

Energy charge was calculated using the following
formula: (ATP + 0.5ADP)/(AMP + ADP + ATP).

Arterial blood samples were collected to measure lactate
concentration.

Statistical analysis

The means + SD are given. For between-group compari-
sons, analysis of variance with the Bonferroni post hoc test
was used. An unpaired two-tailed Student ¢-test or paired
t test was employed to evaluate differences between
groups and within groups versus the baseline, respectively.
The statistical software GraphPad Prism 5.0 (GraphPad
Software Inc., San Diego, CA, USA) was used. A P-value
of <0.05 was considered to be significant.

Results
Fifty rats were used for this study; 40 completed the
experimental protocol and were included. Ten animals
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were excluded, including five rats due to their inability
to wean from CPB and five due to instrumentation or
technical failure during animal preparation.

Among the three studied groups no differences in base-
line hemodynamic parameters were observed (Table 1). A
marked reduction compared to baseline normothermia
was seen in most hemodynamic parameters after rewarm-
ing from DHCA (Table 1).

Functional indices derived from pressure-volume ana-
lysis at different preloads are less influenced by loading

Table 1 Hemodynamic parameters at different time points

Control Epinephrine Levosimendan
HR bpm TO 360+16 354+ 13 34212
T1 340+9 346+ 7 322+9
T2 352+11 362+ 11 355+ 10
MAP mmHg TO 130+ 11 127+£12 129+13
T1 92+9 85+8 87+8
T2 85+6* 164 +13* 112+10
LVESP mmHg TO 952+43 9022+64 934+57
T 662+74 584+5.1 635+6.0
T2 724+89* 1043+92 985+4.7
LVEDP mmHg TO 82+08 80+05 86+06
T 122+14 118+21 125+£1.8
T2 134+09* 11.6+08* 81+05
SV uL TO 65+10 63+9 63+6
Tl 23+8 25+9 23+9
T2 25+10% 41 +9* 58+ 7
CO ml/min TO 43+3 47+£5 45+5
T 15+6 13+£8 14+5
T2 16+10* 21 +5% 38+7
Cl ml/min/100 g BW T0 9.02+1.92 9.02+1.92 108+£1.22
T1 401 +£051 421+£048 421+048
T2 435+060% 495+073* 995+143
dP/dt,ax mmHg/s TO 7305+184 7427+193 7,289 + 201
Tl 4667+145 4588+210 4,644 + 185
T2 4850+ 174* 7,171+189 7,221 £174
dP/dt,,;, mmHg/s TO 7672+306 7511+285 7,622 +297
T1 4856+288 4,992+ 199 4,741 + 283
T2 4510+£190* 5,701 +189* 7,485+190
TPRI mmHg/ml/ TO 278+022 263+0.18 257 +£0.25
min/100 g BW TI 1984019 188+021  190+023
T2 212+025% 5704070 260+0.31

(TO = baseline; T1 = end of CPB-assisted rewarming; T2 = end of 60 min
intravenous infusion).

Cl, cardiac index; CO, cardiac output; dP/dtmax and dP/dtmin maximal slope
of the systolic pressure increment and the diastolic pressure decrement,
respectively; HR, heart rate; LVESP, LV end-systolic pressure; LVEDP, LV end-
diastolic pressure; MAP, mean arterial pressure; SV, stroke volume; TPRI, total
peripheral resistance index.

Data are expressed as mean + SD *P<0.05 T2 vs T0.
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conditions. In particular, Ees and PRSW were calculated
as load-independent indexes of left ventricular contract-
ility. Ees was significantly higher after both levosimen-
dan and epinephrine infusion than control, indicating a
steeper end-systolic pressure-volume relationship and a
better systolic performance (Figure 1). Only levosimen-
dan significantly improved PRSW; the slope was steeper
after levosimendan compared to epinephrine treatment,
indicating an improved systolic function determined by
levosimendan in this setting (Figure 1). Compared with
the corresponding control animals, the overall PRSW
values did not reach statistical significance in the epi-
nephrine group (Figure 1).

The diastolic function after rewarming was des-
cribed by the left ventricular relaxation index (Tau)
and the stiffness index end-diastolic pressure-volume
relationship (EDPVR). Only levosimendan significantly
improved EDPVR and Tau (Figure 1).

Lactate levels were significantly higher after treatment
with epinephrine as well as in the control group than after
levosimendan infusion (8.2 + 3.8 mmol/L and 9.3 +4.4 vs
4.1 + 3.2 mmol/L respectively; P<0.001) (Figure 2).

In addition, levosimendan better preserved the high-
energy phosphate status of the left ventricle compared
to epinephrine. The levosimendan group showed a sig-
nificantly higher ATP content (25.25+1.91 vs 158+
2.11 nmol ATP/mg protein; P<0.001) (Figure 3) and
energy charge (0.80+0.03 vs 0.65+0.03; P<0.001;
Figure 4). The high energy phosphate, hypoxanthine
and xanthine values are summarized in Table 2. In
line with the above findings, the epinephrine group
had significantly higher AMP values compared to the
levosimendan- and control group.

During normothermia epinephrine was associated with
a three-fold increase in cTnl phosphorylation, whereas
levosimendan maintained ¢Tnl phosphroylation at a
physiological ratio (Figure 5). After DHCA, ¢Tnl phos-
phroylation increased five-fold compared with nor-
mothermia. Epinephrine was unable to reverse this
increase. On the contrary, this change was reversed by
levosimendan, which re-established the physiological
c¢Tnl phosphorylation ratio observed during normo-
thermia (Figure 5).

Discussion

Data presented here clearly show that levosimendan
administered after rewarming from DHCA prevents
Ca®* desensitization mediated by ¢Tnl phosphorylation.
Levosimendan, compared to epinephrine, led to a signifi-
cantly better preservation of myocardial ATP content as
well as energy charge and to a reduction in plasma
lactate concentrations. In comparison, Levosimendan
was superior in improving myocardial systolic and
diastolic functions as demonstrated by PV-analysis.
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Clinically deep hypothermia, either accidental or in-
duced as a neuroprotective measure during aortic arch
interventions, leads to an overall myocardial depression
that aggravates ischemia-reperfusion injury [2]. Although
systolic and diastolic dysfunctions are often transient,
more permanent injury in the form of necrosis and
apoptosis might occur. Pulmonary dysfunction, which is
frequently associated with hypothermia-induced myo-
cardial dysfunction, worsens the low cardiac output
state [1].
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Figure 2 Lactate plasma levels. Levosimendan, but not epinephrine,
reduced lactate production at T2 (the end of the 60-minute intraven-
ous infusion). Data are expressed as mean + SD. Symbols indicate
intergroup statistical differences (*P<0.01 vs epinephrine and control).

Experimental models of deep hypothermia and rewar-
ming confirm and explain these clinical findings [15,16].
In an experimental animal model of DHCA, left ven-
tricle contractility, relaxation and afterload were mark-
edly, but transiently, depressed early after reperfusion
and mildly depressed late after reperfusion [17]. During
cooling, end systolic volume decreases, but during the
rewarming phase, isovolumetric pressure is depressed
and ventricular wall shortening reduced, whereas diastolic
function is reported to be affected to a lesser extent.

30 - *
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-

10 4

ATP (nmol/mg protein)
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Figure 3 High energy phosphates status: ATP myocardial
content (nmol/mg). Levosimendan improved myocardial ATP
content at T2 (end of the 60-minute intravenous infusion). Data are
expressed as mean + SD. The symbol indicates intergroup statistical
differences (*P<0.05 vs epinephrine and control).




Rungatscher et al. Critical Care 2013, 17:R245 Page 6 of 9
http://ccforum.com/content/17/5/R245
p
1.0 = NORMOTHERMIA  DHCA/REW
* r 1T 1
o 0.8 4 L ———
E’ T _ p-cTnl (Ser23/24) s 28 kDa
-g 0.6
S ¢
> Total CTNI s ———— 28 kDa
D 0.4 -
()
<
W 0.2 -
0.0 T s
Control Epinephrine Levosimendan E
Figure 4 High energy phosphates status: energy charge %
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infusion). Data are expressed as mean + SD. The symbol indicates
intergroup statistical differences (*P<0.01 vs epinephrine).

Hence, the observed hypothermia-induced cardiac dys-
function is mainly due to compromised systolic function.
Based on recent reports, it is possible to advocate that one
of the main underlying mechanisms of hypothermia-
rewarming-induced contractile dysfunction could be Ca**
overload, which is defined as mechanical or electrical
contractile failure induced by elevated intracellular Ca**
content in myocytes [3,16,18].

Ca®* overload may induce cardiac contractile dysfunc-
tion through different pathways. In particular after hypo-
thermia and rewarming, increase in reactive oxygen
species, decreased ATP synthesis and damaged mitochon-
drial ultrastructure have been reported [3].

YS Han and colleagues have observed that papillary
muscle twitch force was reduced by 35% after rewarming
despite a 15% increase in the intracellular Ca** content,
indicating that reduced contractile force after rewarming
is related to a decrease in myofibrillar Ca** sensitivity
rather than impairment in intracellular Ca®* regulation
[4]. Significant increases in the temporal parameters
of contraction and relaxation in twitch force after
rewarming likely reflect a change in myosin/actin cross-

Table 2 High-energy phosphates, hypoxanthine and
xanthine myocardial content at T2 (end of the 60-minute
intravenous infusion)

(nmol/mg protein)  Control Epinephrine  Levosimendan
Phosphocreatine 1430+792 678+604 11.57+0.76
ATP 1865+563 1580+ 2.11 2525+191*
ADP 8.74+£147 1092+2.12 9.63 £0.85
AMP 3.26+192 626+ 1525 264+£042°
Hypoxanthine 042 +0.07 033+0.15 048 +0.03
Xanthine 043 £0.09 056+0.19 0.38£0.00

Data are expressed as mean * SD. *P<0.001; °P<0.01 vs epinephrine. 5P<0.05
vs control.

Figure 5 Phosphorylation of cardiac Troponin I (cTnl). Western
blot analysis were performed on myocardial biopsies of normothermic
controls (separate series) and after rewarming from DHCA. Epinephrine
determined a significant phosphorylation of cTnl in both conditions.
Rewarming from DHCA produced a similar phosphorylation.
Levosimendan did not cause phosphorylation of cTnl during
normothermia and prevented the phosphorylation after rewarming
from DHCA. Values determined by densitometry of phosphorylated-
cTnl (p-cTnl) over the relative expression of total cTnl. Data are shown
here as mean = SEM (n = 5 per group). Symbol indicates intergroup
statistical differences (*P<0.05). DHCA/REW, rewarming after deep
hypothermic circulatory arrest.

bridge cycling kinetics. By plotting phase-plane loops (the
relationship between twitch force and intracellular Ca**
concentration), which represent coarse dynamic indices of
myofilaments Ca** sensitivity during the relaxation phase
of the twitch force, a rightward shift was observed in the
relaxation phase during stable hypothermia, as well as
after rewarming, in intact papillary muscle [4]. This indi-
cates a decrease in myofilaments Ca®* sensitivity due to
hypothermia and rewarming.

These data propose that hypothermia decreases car-
diac myofilaments Ca®" sensitivity, which is not reversed
by rewarming, thus contributing to post-hypothermic
cardiac contractile dysfunction.

Numerous studies have demonstrated that increased
phospho-mediated phosphorylation of the sarcomeric
protein ¢Tnl reduces myofilament Ca** sensitivity and
shifts the force-Ca2+ relationship rightward under nor-
mothermic circumstances [5,19,20].

One way to increase the contractile force of the sarco-
mere is to increase cytosolic Ca>*; another is to modulate
the response of sarcomeres to Ca**. The unique position
of ¢Tnl to regulate and modulate cardiac function under
the influence of adrenergic signaling is well documented
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[21]. In more detail, cTnl has a NH2-terminal extension
of approximately 30 amino acids that houses Ser23/24,
which if phosphorylated by phosphokinase A depresses
sarcomere sensitivity to Ca®*and increases cross-bridge
kinetics.

In the present study, we found that after rewarming
from DHCA, there was a significant increase in cTnl
phosphorylation at phosphokinase A sites, as shown by
Western blot analysis. Phosphorylation of cTnl is medi-
ated by several kinases (phosphokinase A, C, G), but
particularly phosphokinase A-mediated phosphorylation
via-adrenergic stimulation plays a major physiological
role in meeting the circulatory demand in the physio-
logical state [21].

In general, changes in the ¢Tnl phosphorylation status,
as reported in the failing human heart are considered a
change in the balance between kinase and phosphatase
activities, and the optimal balance is realized during nor-
mal cardiac function. Thus, hypothermia and rewarming,
depending on severity and depth, appear to tip the bal-
ance between kinase and phosphatase activities, leading
to alterations in myofilament Ca** sensitivity and myo-
cardial contractility.

Furthermore, we have previously reported a lack of
effect of pharmacological agents to support cardiac
contractile function mediated via the receptor - cCAMP -
phosphokinase A pathway during, as well as after,
rewarming [11]. Likewise, if hypothermia and rewarm-
ing per se activate the receptor - cAMP - phosphoki-
nase A pathway, one may conclude that an additional
pharmacological stimulus of the receptor under these
circumstances would achieve a markedly reduced cardiac
inotropic effect.

Moreover, cardiovascular effects mediated by -adreno-
ceptors are significantly diminished after hypothermia,
suggesting that the use of the [-adrenoceptor specific
agonist should be reconsidered [7-9]. Additionally, phar-
macologic therapy with catecholamines has substantial
limitations because these are associated with Ca®* over-
load, elevated myocardial oxygen consumption, arrhyth-
mogenesis and regional hypoperfusion leading to organ
damage [8-10].

Levosimendan is a pyridazinone dinitrite derivative
belonging to the new inotropic drugs class of Ca®* sensi-
tizers. It exerts its positive inotropic effect by sensitizing
cardiac troponin C to calcium during systole, thus increas-
ing cardiac performance without increasing myocardial
oxygen consumption. Levosimendan also has a weak
arrhythmogenic effect [22]. Our group demonstrated for
the first time the efficacy of levosimendan in improving
myocardial dysfunction after deep hypothermia-rewarm-
ing [11].

This study was conducted in a previously described
and validated rat model of CPB [12]. DHCA and CPB-
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assisted rewarming reproduces the clinical setting of
both cardiac surgery interventions and extracorporeal
resuscitation after accidental hypothermia. The results of
this study demonstrated that levosimendan treatment
after rewarming produced a significant improvement of
clinically used parameters of cardiac functions (HR,
MAP, SV and CO). In the same manner, more precise
parameters derived from pressure-volume analysis being
insensitive to preload effects confirmed significantly im-
proved systolic function after levosimendan treatment
when compared with epinephrine.

Epinephrine produced an increased MAP without an
improvement in SV. This increase in afterload during
the rewarming phase may explain the significantly higher
lactate plasma levels with epinephrine compared to levo-
simendan after rewarming from hypothermia. Moreover,
levosimendan was superior in improving diastolic func-
tion, which is clearly evident from the left ventricular
relaxation indexes. In line with these findings, levosi-
mendan also significantly better preserved high-energy
phosphates shown by energy charge and ATP myocardial
content than epinephrine. The differences concerning
phosphocreatine, hypoxanthine and xanthine between
groups are due to the high standard deviation values
(control- and epinephrine group; Table 2) not significant.
However, the mean values are lowest for phosphocrea-
tine and highest for xanthine in the epinephrine group.
In addition, there was a significant rise of AMP contents
of the hearts in the epinephrine group compared to the
control - as well as levosimendan group. These findings
are in line with the observed significantly increased
arterial lactate levels after treatment with epinephrine.

Energy charge uses the total measured concentrations
of AMP, ADP and ATP determined after careful diges-
tion (liquid nitrogen, ball mill and neutralization of then
sample) by HPLC and, therefore, do not directly reflect
the bioenergetic situation of the free metabolites in the
cytosol. The assessment of free fluctuating concentra-
tions of these metabolites would require 31P NMR and
a number of near equilibrium expressions using the
creating kinase and adenylatekinase equilibrium [23].
However, energy charge as calculated value from the
absolute concentrations of AMP, ADP and ATP has been
proven to be a valuable parameter for energetic situa-
tions of cells and tissue [24-26].

In the present study and differently from the previously
reported [11], there were no major arrhythmic events in
the epinephrine-treated group or in levosimendan-treated
one. No other downsides related to treatment were
documented.

Further investigations are needed to validate these
results in the clinical setting and to evaluate the cost/
benefit ratio in this setting of high-risk patients. None-
theless, on the basis of these findings, use of Ca**
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sensitizer drugs, such as levosimendan, seems rational in
induced or accidental deep hypothermia.

Finally, some important limitations remain. The ani-
mal model does not faithfully reproduce the clinical set-
ting. Therefore, the outcome of this study in a rat model
of CPB remains to be demonstrated in large-animal and
clinical studies. However, because of the small animal
size, this model allows rapid and precise control over
body temperature, which is difficult to achieve in clinical
practice at present, and it may be particularly appro-
priate for defining optimal hypothermia parameters.
Another limitation of the present study is that we only
investigated a single dose of epinephrine and levosimen-
dan. One, therefore, cannot rule out the possibility that
different dosages or treatment schemes might have
generated different functional outcomes from the one
herein. Nevertheless, the particular infusion rate for levo-
simendan and for epinephrine was deliberately chosen
because it is the highest dose regimen suggested in the
clinical setting.

Conclusion

Levosimendan due to prevention of calcium desensitiza-
tion by cTnl phosphorylation is more effective than epi-
nephrine for treatment of myocardial dysfunction after
rewarming from DHCA.

Key messages

e CPB-assisted rewarming after DHCA results in
acute myocardial dysfunction.

e Levosimendan but not epinephrine prevents
myofilaments Ca®* desensitization mediated by ¢Tnl
phosphorylation after rewarming.

e In this setting, levosimendan is more effective than
epinephrine in improving systolic and diastolic
functions, high-energy phosphates myocardial content
and in reducing lactate plasma concentrations.
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