43 research outputs found

    New insights into fetal mammary gland morphogenesis : differential effects of natural and environmental estrogens

    Get PDF
    An increased breast cancer risk during adulthood has been linked to estrogen exposure during fetal life. However, the impossibility of removing estrogens from the feto-maternal unit has hindered the testing of estrogen's direct effect on mammary gland organogenesis. To overcome this limitation, we developed an ex vivo culture method of the mammary gland where the direct action of estrogens can be tested during embryonic days (E) 14 to 19. Mouse mammary buds dissected at E14 and cultured for 5 days showed that estrogens directly altered fetal mammary gland development. Exposure to 0.1 pM, 10 pM, and 1 nM 17 beta-estradiol (E2) resulted in monotonic inhibition of mammary buds ductal growth. In contrast, Bisphenol-A (BPA) elicited a non-monotonic response. At environmentally relevant doses (1 mu M), BPA significantly increased ductal growth, as previously observed in vivo, while 1 mu M BPA significantly inhibited ductal growth. Ductal branching followed the same pattern. This effect of BPA was blocked by Fulvestrant, a full estrogen antagonist, while the effect of estradiol was not. This method may be used to study the hormonal regulation of mammary gland development, and to test newly synthesized chemicals that are released into the environment without proper assessment of their hormonal action on critical targets like the mammary gland.Peer reviewe

    Ectodysplasin/NF-kappa B Promotes Mammary Cell Fate via Wnt/beta-catenin Pathway

    Get PDF
    Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-kappa B in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-kappa B is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.Peer reviewe

    Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty

    Get PDF
    Mammary gland development begins with the appearance of epithelial placodes that invaginate, sprout, and branch to form small arborized trees by birth. The second phase of ductal growth and branching is driven by the highly invasive structures called terminal end buds (TEBs) that form at ductal tips at the onset of puberty. Ectodysplasin (Eda), a tumor necrosis factor-like ligand, is essential for the development of skin appendages including the breast. In mice, Eda regulates mammary placode formation and branching morphogenesis, but the underlying molecular mechanisms are poorly understood. Fibroblast growth factor (Fgf) receptors have a recognized role in mammary ductal development and stem cell maintenance, but the ligands involved are ill-defined. Here we report that Fgf20 is expressed in embryonic mammary glands and is regulated by the Eda pathway. Fgf20 deficiency does not impede mammary gland induction, but compromises mammary bud growth, as well as TEB formation, ductal outgrowth and branching during puberty. We further show that loss of Fgf20 delays formation of Eda-induced supernumerary mammary buds and normalizes the embryonic and postnatal hyperbranching phenotype of Eda overexpressing mice. These findings identify a hitherto unknown function for Fgf20 in mammary budding and branching morphogenesis.Peer reviewe

    Imagine beyond: recent breakthroughs and next challenges in mammary gland biology and breast cancer research

    Full text link
    On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward

    Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles

    Get PDF
    In hair follicle development, a placode-derived signal is believed to induce formation of the dermal condensation, an essential component of ectodermal organs. However, the identity of this signal is unknown. Furthermore, although induction and patterning of hair follicles are intimately linked, it is not known whether the mesenchymal condensation is necessary for inducing the initial epithelial pattern. Here, we show that fibroblast growth factor 20 (Fgf20) is expressed in hair placodes and is induced by and functions downstream from epithelial ectodysplasin (Eda)/Edar and Wnt/ÎČ-Catenin signaling to initiate formation of the underlying dermal condensation. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles and subsequent formation of guard, awl, and auchene hairs. Although primary dermal condensations are absent in Fgf20 mutant mice, a regular array of hair placodes is formed, demonstrating that the epithelial patterning process is independent of known histological and molecular markers of underlying mesenchymal patterns during the initial stages of hair follicle development

    The LifeCycle Project-EU Child Cohort Network : a federated analysis infrastructure and harmonized data of more than 250,000 children and parents

    Get PDF
    Early life is an important window of opportunity to improve health across the full lifecycle. An accumulating body of evidence suggests that exposure to adverse stressors during early life leads to developmental adaptations, which subsequently affect disease risk in later life. Also, geographical, socio-economic, and ethnic differences are related to health inequalities from early life onwards. To address these important public health challenges, many European pregnancy and childhood cohorts have been established over the last 30 years. The enormous wealth of data of these cohorts has led to important new biological insights and important impact for health from early life onwards. The impact of these cohorts and their data could be further increased by combining data from different cohorts. Combining data will lead to the possibility of identifying smaller effect estimates, and the opportunity to better identify risk groups and risk factors leading to disease across the lifecycle across countries. Also, it enables research on better causal understanding and modelling of life course health trajectories. The EU Child Cohort Network, established by the Horizon2020-funded LifeCycle Project, brings together nineteen pregnancy and childhood cohorts, together including more than 250,000 children and their parents. A large set of variables has been harmonised and standardized across these cohorts. The harmonized data are kept within each institution and can be accessed by external researchers through a shared federated data analysis platform using the R-based platform DataSHIELD, which takes relevant national and international data regulations into account. The EU Child Cohort Network has an open character. All protocols for data harmonization and setting up the data analysis platform are available online. The EU Child Cohort Network creates great opportunities for researchers to use data from different cohorts, during and beyond the LifeCycle Project duration. It also provides a novel model for collaborative research in large research infrastructures with individual-level data. The LifeCycle Project will translate results from research using the EU Child Cohort Network into recommendations for targeted prevention strategies to improve health trajectories for current and future generations by optimizing their earliest phases of life.Peer reviewe

    Association of musculoskeletal pain with the achievement of treatment targets for type 2 diabetes among primary care patients

    No full text
    Abstract Aims: To assess the association of diagnosed musculoskeletal (MS) pain (low back, neck, shoulder, and knee pain; and the number of pain sites) with the achievement of targets for glycosylated haemoglobin A1c (HbA1c), low-density-lipoprotein cholesterol (LDL), and systolic blood pressure (SBP) among primary care patients with type 2 diabetes (T2D). Methods: The cross-sectional study population consisted of 3478 patients with a registry-based T2D diagnosis and available registry-based data on MS pain diagnoses, covariates, and outcomes between 2016 and 2019. Logistic regression analysis was used to evaluate the study aims. Results: Overall, 22% had at least one of the four types of MS pain, and 73%, 57%, and 51% achieved the treatment targets of HbA1c, LDL, and SBP, respectively. T2D patients with or without MS pain did not differ in their achievement of T2D treatment goals. Of pain locations, low back pain was associated with higher rates of achievement of the LDL target (OR 1.29, 95% CI 1.01–1.65), but the association was attenuated in the adjusted model. Conclusions: MS pain was relatively prevalent among primary care patients with T2D, but did not influence the achievement of T2D treatment goals

    Association of personalised care plans with monitoring and control of clinical outcomes, prescription of medication and utilisation of primary care services in patients with type 2 diabetes:an observational real-world study

    No full text
    Abstract Objective: To study the association of personalised care plans with monitoring and controlling clinical outcomes, prescription of cardiovascular and antihyperglycaemic medication and utilisation of primary care services in patients with type 2 diabetes (T2D). Patients: Primary care T2D outpatients from the Rovaniemi Health Centre. Setting: The municipal health centre, Rovaniemi, Finland. Design: A cross-sectional, observational, retrospective register-based study. The patients were divided into three groups: ‘no care plan entries’ (usual care); ‘1–2 care plan entries’; and ‘3 or more care plan entries’. Main outcome measures: Monitoring of clinical and biochemical measures, achievement of treatment targets, prescription of cardiovascular and antihyperglycemic medication, and use of primary care services. Results: A total of 5104 patients with T2D (mean age 65.5 years (SD 12.4)), of which 67% had at least one care plan entry. Compared to usual care, the establishment of a care plan (either care plan group) was associated with better monitoring of glycosylated haemoglobin A1c, low-density-lipoprotein cholesterol, systolic blood pressure (sBP), and renal function, and there was more frequent prescription of all cardiovascular and antihyperglycemic medication. Patients in either care plan group were more likely to achieve sBP target (p < 0.05). Patients without a care plan had more unplanned primary care physician contacts compared to patients in care plan groups (p <0.001). Conclusion: Establishment of a care plan is associated with more intensive and focussed care of patients with T2D. The appropriate use of primary care resources is essential and personalised care plans may contribute to the treatment of patients with T2D

    Expression of Foxi3 is regulated by ectodysplasin in skin appendage placodes

    No full text
    BACKGROUND Foxi3 is a member of the large forkhead box family of transcriptional regulators, which have a wide range of biological activities including manifold developmental processes. Heterozygous mutation in Foxi3 was identified in several hairless dog breeds characterized by sparse fur coat and missing teeth. A related phenotype called hypohidrotic ectodermal dysplasia (HED) is caused by mutations in the ectodysplasin (Eda) pathway genes. RESULTS Expression of Foxi3 was strictly confined to the epithelium in developing ectodermal appendages in mouse embryos, but no expression was detected in the epidermis. Foxi3 was expressed in teeth and hair follicles throughout embryogenesis, but in mammary glands only during the earliest stages of development. Foxi3 expression was decreased and increased in Eda loss- and gain-of-function embryos, respectively, and was highly induced by Eda protein in embryonic skin explants. Also activin A treatment up-regulated Foxi3 mRNA levels in vitro. CONCLUSIONS Eda and activin A were identified as upstream regulators of Foxi3. Foxi3 is a likely transcriptional target of Eda in ectodermal appendage placodes suggesting that HED phenotype may in part be produced by compromised Foxi3 activity. In addition to hair and teeth, Foxi3 may have a role in nail, eye, and mammary, sweat, and salivary gland development
    corecore