81 research outputs found

    Importance of voltage-dependent inactivation in N-type calcium channel regulation by G-proteins.: Channel inactivation in G-protein regulation

    Get PDF
    International audienceDirect regulation of N-type calcium channels by G-proteins is essential to control neuronal excitability and neurotransmitter release. Binding of the G(betagamma) dimer directly onto the channel is characterized by a marked current inhibition ("ON" effect), whereas the pore opening- and time-dependent dissociation of this complex from the channel produce a characteristic set of biophysical modifications ("OFF" effects). Although G-protein dissociation is linked to channel opening, the contribution of channel inactivation to G-protein regulation has been poorly studied. Here, the role of channel inactivation was assessed by examining time-dependent G-protein de-inhibition of Ca(v)2.2 channels in the presence of various inactivation-altering beta subunit constructs. G-protein activation was produced via mu-opioid receptor activation using the DAMGO agonist. Whereas the "ON" effect of G-protein regulation is independent of the type of beta subunit, the "OFF" effects were critically affected by channel inactivation. Channel inactivation acts as a synergistic factor to channel activation for the speed of G-protein dissociation. However, fast inactivating channels also reduce the temporal window of opportunity for G-protein dissociation, resulting in a reduced extent of current recovery, whereas slow inactivating channels undergo a far more complete recovery from inhibition. Taken together, these results provide novel insights on the role of channel inactivation in N-type channel regulation by G-proteins and contribute to the understanding of the physiological consequence of channel inactivation in the modulation of synaptic activity by G-protein coupled receptors

    Attenuating midline thalamus bursting to mitigate absence epilepsy

    Get PDF
    Advancing the mechanistic understanding of absence epilepsy is crucial for developing new therapeutics, especially for patients unresponsive to current treatments. Utilizing a recently developed mouse model of absence epilepsy carrying the BK gain-of-function channelopathy D434G, here we report that attenuating the burst firing of midline thalamus (MLT) neurons effectively prevents absence seizures. We found that enhanced BK channel activity in the BK-D434G MLT neurons promotes synchronized bursting during the ictal phase of absence seizures. Modulating MLT neurons through pharmacological reagents, optogenetic stimulation, or deep brain stimulation effectively attenuates burst firing, leading to reduced absence seizure frequency and increased vigilance. Additionally, enhancing vigilance by amphetamine, a stimulant medication, or physical perturbation also effectively suppresses MLT bursting and prevents absence seizures. These findings suggest that the MLT is a promising target for clinical interventions. Our diverse approaches offer valuable insights for developing next generation therapeutics to treat absence epilepsy

    Two patients with an anti-N-methyl-D-aspartate receptor antibody syndrome-like presentation and negative results of testing for autoantibodies. Pediatr Neurol

    Get PDF
    abstract We describe two boys whose distinct and remarkable clinical pictures suggested the possibility of anti-Nmethyl-D-aspartate receptor antibody encephalitis. Both patients responded to immunotherapy, but neither manifested that antibody. Patient 1 exhibited florid encephalopathy with psychotic manifestations including inappropriate affect, intermittent delirium, visual hallucinations, severe anorexia, agitation, paranoid ideation, and abnormal electroencephalogram results. He responded to intravenous immunoglobulin, with steady improvement over 3 months to almost complete remission for 1 year, followed by a relapse that again responded, more quickly, to intravenous immunoglobulin. A second relapse occurred 1 month later, and again responded to intravenous immunoglobulin. Patient 2 exhibited progressive, severely debilitating limb dystonia that worsened over 1.5 years, with milder psychiatric symptoms including mood instability, aggressiveness, impulsivity, and depression. When he developed thymic hyperplasia 1.5 years into his illness, he underwent a thymectomy, and improved significantly on a regimen of plasmapheresis and intravenous immunoglobulin. Patients presenting with symptoms suggestive of autoimmune encephalitis, but without antibodies, may still respond to immunotherapy

    Methodology of a Natural History Study of a Rare Neurodevelopmental Disorder: Alternating Hemiplegia of Childhood as a Prototype Disease

    Get PDF
    Here, we describe the process of development of the methodology for an international multicenter natural history study of alternating hemiplegia of childhood as a prototype disease for rare neurodevelopmental disorders. We describe a systematic multistep approach in which we first identified the relevant questions about alternating hemiplegia of childhood natural history and expected challenges. Then, based on our experience with alternating hemiplegia of childhood and on pragmatic literature searches, we identified solutions to determine appropriate methods to address these questions. Specifically, these solutions included development and standardization of alternating hemiplegia of childhood-specific spell video-library, spell calendars, adoption of tailored methodologies for prospective measurement of nonparoxysmal and paroxysmal manifestations, unified data collection protocols, centralized data platform, adoption of specialized analysis methods including, among others, Cohen kappa, interclass correlation coefficient, linear mixed effects models, principal component, propensity score, and ambidirectional analyses. Similar approaches can, potentially, benefit in the study of other rare pediatric neurodevelopmental disorders

    Gaps and opportunities in refractory status epilepticus research in children: A multi-center approach by the Pediatric Status Epilepticus Research Group (pSERG)

    Get PDF
    PURPOSE: Status epilepticus (SE) is a life-threatening condition that can be refractory to initial treatment. Randomized controlled studies to guide treatment choices, especially beyond first-line drugs, are not available. This report summarizes the evidence that guides the management of refractory convulsive SE (RCSE) in children, defines gaps in our clinical knowledge and describes the development and works of the \u27pediatric Status Epilepticus Research Group\u27 (pSERG). METHODS: A literature review was performed to evaluate current gaps in the pediatric SE and RCSE literature. In person and online meetings helped to develop and expand the pSERG network. RESULTS: The care of pediatric RCSE is largely based on extrapolations of limited evidence derived from adult literature and supplemented with case reports and case series in children. No comparative effectiveness trials have been performed in the pediatric population. Gaps in knowledge include risk factors for SE, biomarkers of SE and RCSE, second- and third-line treatment options, and long-term outcome. CONCLUSION: The care of children with RCSE is based on limited evidence. In order to address these knowledge gaps, the multicenter pSERG was established to facilitate prospective collection, analysis, and sharing of de-identified data and biological specimens from children with RCSE. These data will allow identification of treatment strategies associated with better outcomes and delineate evidence-based interventions to improve the care of children with SE

    Somatic variants in diverse genes leads to a spectrum of focal cortical malformations

    Get PDF
    Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n=16), focal cortical dysplasia type I and related phenotypes (n=48), focal cortical dysplasia type II (n=44), or focal cortical dysplasia type III (n=15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P=0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations

    Clinical profile of patients with ATP1A3 mutations in alternating hemiplegia of childhood-a study of 155 patients.

    Get PDF
    BACKGROUND: Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype. METHODS: Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient. RESULTS: In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included: p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis, compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient of severity between the three major mutations with differences in intellectual (p = 0.029) and motor (p = 0.039) disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p < 0.001). With regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No statistically significant clinical correlations were found between patients with and without ATP1A3 mutations. CONCLUSIONS: Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with the most frequent mutations and the clinical picture of those with less common mutations confirms the results from previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC. They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studie

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies
    corecore