9,127 research outputs found

    Linear Invariant Systems Theory for Signal Enhancement

    Get PDF
    This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na análise de técnicas de sub-espaço. A resposta em frequência dos filtros resultantes da decomposição em valores singulares é obtida aplicando as propriedades dos sistemas LTI

    Phase diagrams of Janus fluids with up-down constrained orientations

    Full text link
    A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemispheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo simulations and simple analytical approximations. These fluids can be experimentally realized by the application of an external static electrical field. The gas-liquid and demixing phase transitions in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid transition is present in all the models, even if only one of the four possible patch-patch interactions is attractive. Moreover, provided the attraction between like particles is stronger than between unlike particles, the system demixes into two subsystems with different composition at sufficiently low temperatures and high densities.Comment: 10 pages, 6 figure

    Complete breakdown of the Debye model of rotational relaxation near the isotropic-nematic phase boundary: Effects of intermolecular correlations in orientational dynamics

    Get PDF
    The Debye-Stokes-Einstein (DSE) model of rotational diffusion predicts that the rotational correlation times τl\tau_{l} vary as [l(l+1)]1[l(l+1)]^{-1}, where ll is the rank of the orientational correlation function (given in terms of the Legendre polynomial of rank ll). One often finds significant deviation from this prediction, in either direction. In supercooled molecular liquids where the ratio τ1/τ2\tau_{1}/\tau_{2} falls considerably below three (the Debye limit), one usually invokes a jump diffusion model to explain the approach of the ratio τ1/τ2\tau_{1}/\tau_{2} to unity. Here we show in a computer simulation study of a standard model system for thermotropic liquid crystals that this ratio becomes much less than unity as the isotropic-nematic phase boundary is approached from the isotropic side. Simultaneously, the ratio τ2/η\tau_2/\eta (where η\eta is the shear viscosity of the liquid) becomes {\it much larger} than hydrodynamic value near the I-N transition. We have also analyzed the break down of the Debye model of rotational diffusion in ratios of higher order rotational correlation times. We show that the break down of the DSE model is due to the growth of orientational pair correlation and provide a mode coupling theory analysis to explain the results.Comment: Submitted to Physical Review

    Quasi-Topological Quantum Field Theories and Z2Z_2 Lattice Gauge Theories

    Full text link
    We consider a two parameter family of Z2Z_2 gauge theories on a lattice discretization T(M)T(M) of a 3-manifold MM and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Γ\Gamma. We show that there is a region Γ0\Gamma_0 of Γ\Gamma where the partition function and the expectation value of the Wilson loop for a curve $\gamma$ can be exactly computed. Depending on the point of $\Gamma_0$, the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of $M$. The Wilson loop on the other hand, does not depend on the topology of $\gamma$. However, for a subset of $\Gamma_0$, depends on the size of γ\gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.Comment: 19 pages, 13 figure

    Self-Pulsating Semiconductor Lasers: Theory and Experiment

    Get PDF
    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure

    Nonlinear oscillator with parametric colored noise: some analytical results

    Full text link
    The asymptotic behavior of a nonlinear oscillator subject to a multiplicative Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in terms of energy-angle coordinates, it is observed that the angle is a fast variable as compared to the energy. Thus, an effective stochastic dynamics for the energy can be derived if the angular variable is averaged out. However, the standard elimination procedure, performed earlier for a Gaussian white noise, fails when the noise is colored because of correlations between the noise and the fast angular variable. We develop here a specific averaging scheme that retains these correlations. This allows us to calculate the probability distribution function (P.D.F.) of the system and to derive the behavior of physical observables in the long time limit

    Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry

    Full text link
    We study supersymmetry of a self-isospectral one-gap Poschl-Teller system in the light of a mirror symmetry that is based on spatial and shift reflections. The revealed exotic, partially broken nonlinear supersymmetry admits seven alternatives for a grading operator. One of its local, first order supercharges may be identified as a Hamiltonian of an associated one-gap, non-periodic Bogoliubov-de Gennes system. The latter possesses a nonlinear supersymmetric structure, in which any of the three non-local generators of a Clifford algebra may be chosen as the grading operator. We find that the supersymmetry generators for the both systems are the Darboux-dressed integrals of a free spin-1/2 particle in the Schrodinger picture, or of a free massive Dirac particle. Nonlocal Foldy- Wouthuysen transformations are shown to be involved in the supersymmetric structure.Comment: 20 pages, comment added. Published versio

    Kaluza-Klein electrically charged black branes in M-theory

    Get PDF
    We present a class of Kaluza-Klein electrically charged black p-brane solutions of ten-dimensional, type IIA superstring theory. Uplifting to eleven dimensions these solutions are studied in the context of M-theory. They can be interpreted either as a p+1 extended object trapped around the eleventh dimension along which momentum is flowing or as a boost of the following backgrounds: the Schwarzschild black (p+1)-brane or the product of the (10-p)-dimensional Euclidean Schwarzschild manifold with the (p+1)-dimensional Minkowski spacetime.Comment: 16 pages, uses latex and epsf macro, figures include

    Heat exchange between two interacting nanoparticles beyond the fluctuation-dissipation regime

    Get PDF
    We show that the observed non-monotonic behavior of the thermal conductance between two nanoparticles when they are brought into contact is originated by an intricate phase space dynamics. Here it is assumed that this dynamics results from the thermally activated jumping through a rough energy landscape. A hierarchy of relaxation times plays the key role in the description of this complex phase space behaviour. Our theory enables us to analyze the heat transfer just before and at the moment of contact.Comment: 4 pages, 1 figure, approved for publication in Physical Review Letter

    Chandra ACIS Survey of M33 (ChASeM33): X-ray Imaging Spectroscopy of M33SNR21, the Brightest X-ray Supernova Remnant in M33

    Get PDF
    We present and interpret new X-ray data for M33SNR21, the brightest X-ray supernova remnant (SNR) in M33. The SNR is in seen projection against (and appears to be interacting with) the bright HII region NGC592. Data for this source were obtained as part of the Chandra ACIS Survey of M33 (ChASeM33) Very Large Project. The nearly on-axis Chandra data resolve the SNR into a ~5" diameter (20 pc at our assumed M33 distance of 817+/-58 kpc) slightly elliptical shell. The shell is brighter in the east, which suggests that it is encountering higher density material in that direction. The optical emission is coextensive with the X-ray shell in the north, but extends well beyond the X-ray rim in the southwest. Modeling the X-ray spectrum with an absorbed sedov model yields a shock temperature of 0.46(+0.01,-0.02) keV, an ionization timescale of n_e t = 2.1(+0.2,0.3)×10122.1 (+0.2,-0.3) \times 10^{12} cm3^{-3} s, and half-solar abundances (0.45 (+0.12, -0.09)). Assuming Sedov dynamics gives an average preshock H density of 1.7 +/- 0.3 cm3^{-3}. The dynamical age estimate is 6500 +/- 600 yr, while the best fit netn_e t value and derived nen_e gives 8200 +/- 1700 yr; the weighted mean of the age estimates is 7600 +/- 600 yr. We estimate an X-ray luminosity (0.25-4.5 keV) of (1.2 +/- 0.2) times 103710^{37} ergs s1^{-1} (absorbed), and (1.7 +/- 0.3) times 103710^{37} ergs s1^{-1} (unabsorbed), in good agreement with the recent XMM-Newton determination. No significant excess hard emission was detected; the luminosity 1.2×1035\le 1.2\times 10^{35} ergs s1^{-1} (2-8 keV) for any hard point source.Comment: 27 pages, 6 figures (3 color). ApJ (in press
    corecore