
Linear Invariant Systems Theory for Signal Enhancement
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Abstract – This paper discusses a linear time invariant (LTI)
systems approach to signal enhancement via projective sub-
space techniques. It provides closed form expressions for the
frequency response of data adaptive finite impulse response
eigenfilters. An illustrative example using speech enhance-
ment is also presented.

Resumo – Este artigo apresenta a aplicaç̃ao da teoria de
sistemas lineares invariantes no tempo (LTI) na ańalise de
técnicas de sub-espaço. A resposta em frequência dos filtros
resultantes da decomposiç̃ao em valores singulareśe obtida
aplicando as propriedades dos sistemas LTI.
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I. I NTRODUCTION

Signal enhancement via projective subspace techniques is
widely used in speech processing and biomedical signal
processing to improve noise-corrupted signals. Different
notations or mathematical formalisms are discussed in the
literature [1], [2], [3], but singular value decomposition
(SVD) is common to all. A data-derived trajectory matrix
X is replaced by a low-rank approximation̂X. From this
low-rank matrixX̂ an enhanced version̂x[k] of the original
signal is then obtained employing diagonal averaging [4].
A discussion of these techniques in the frequency domain
was given by [5] where it was shown that signal enhance-
ment can be achieved by a bank of finite impulse response
filters arranged as parallel pairs of analysis-synthesis filters.
The proposed approach was formulated using matrix alge-
bra operations [5], [6], [1].In this work we show that linear
invariant system theory provides alternative tools to derive
such input-output relations. Analytical expressions for the
frequency response of these filters will be given. In addi-
tion, the main filter characteristics, i.e. causality and being
zero-phase, are deduced. The paper addresses the follow-
ing three topics: the meaning of SVD in terms of univariate
time series analysis; the filter bank interpretation and a few
illustrative examples using speech signals.

II. U NIVARIATE TIME -SERIES ANDSVD

Singular value decomposition constitutes the main tool to
estimate subspace models for multidimensional data sets.
In multi-sensor signal processing, the data vector is natu-
rally formed with samples of different sensors. However,
projective subspace techniques can also be applied to uni-
variate time series by forming vectors with sliding windows
of the signal. This transformation is called embedding the
signal into the space of time-delayed coordinates. Consid-
ering a segment of a signal(x[1], x[2], . . . , x[K]), the mul-
tidimensional signal is obtained byxk∗ = (x[k], . . . , x[k +

N ]), k = 1, . . . , M = K − N + 1. The lagged vectors lie
in a space of dimensionN and constitute the rows of the
trajectory matrix

X =















x[1] x[2] . . . x[N ]
x[2] x[3] . . . x[N + 1]
x[3] x[4] . . . x[N + 2]

...
...

. . .
...

x[M ] x[M + 1] . . . x[K]















(1)

Note that this matrix has identical entries along its anti-
diagonals, hence forms an Hankel matrix [1]. There are
other alternatives to form the data matrix via embedding the
signal in anN−dimensional space which yield a Toeplitz
matrix. The latter has identical elements along its diago-
nals [2]. However, the processing steps are the same, only
adapted to cope with the differences in data organization
[7]. Following that strategy, the univariate signal is orga-
nized into anM × N matrix X whose SVD [8] allows to
explain the data set as a product of matricesX = UΣVT ,
whereU andV are orthonormal matrices with dimension
M × M and N × N , respectively. The matrixΣ is an
M × N matrix with r ≤ min(M, N) non-zero singu-
lar values along the diagonal and zeros everywhere else.
The eigenvector matrices (U andV) result from an eigen-
value decomposition of two symmetric and square matrices
computed from the data matrix. Assuming that the vectors
xk∗, k = 1, 2 . . . , M , represent the rows ofX, the two dif-
ferent square matrices are computed in the following way:

• Matrix S = XTX is anN ×N matrix where each en-
try represents the correlations between pairs of entries
of the data vectors. It is an outer product matrix corre-
sponding to the non-normalized correlation matrix. If
the data is centered, it is also the non-normalized co-
variance matrix, also called scatter matrix. Its eigen-
value decomposition reads

S = VΛVT = VΣT ΣVT .

The matrixΛ is a diagonal matrix with at mostr ≤
min(M, N) non-zero eigenvalues corresponding to
the square of the singular values. And the eigenvec-
tor matrixV is orthonormal, e.g.VT V = I, whereI
is the identity matrix.

• Matrix K = XXT is anM × M matrix where each
entry represents the dot product between pairs of vec-
tors of the data set (the rows ofX). It is known as
kernel matrix or dot product matrix. The eigenvalue
decomposition of this matrix reads

K = UΛUT = UΣΣT UT .

The matrixΛ is a diagonal matrix with at mostr ≤
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min(M, N) non-zero eigenvalues andUT U = I is an
orthonormal eigenvector matrix.

Orthogonal subspace models, like SVD or principal com-
ponent analysis (PCA), are described solely by the matrix
V that defines an orthonormal basis vector matrix of the
N − dimensional space of the data [8]. A low-rank ap-
proximation of the data matrixX can be expressed as fol-
lows

X̂ = XVPVT = YPVT (2)

where each term means:

• matrix Y = XV represents the projection of the
data vectorsxk∗ ∈ ℜN onto the basis vectors. Each
column y∗n represents the projections of all row
vectorsxk∗, k = 1, . . . , M onto then-th basis vector
v∗n.

• matrix P is a diagonal matrix with diagonal entries
equal to0 ≤ pnn ≤ 1. If pnn = 1, then − th column
of Y is retained, and ifpnn = 0, it is replaced by a
null vector. In the general case, the scaling factorspnn

can be estimated from the eigenvalue spectrum and the
related noise variance [1].

• the reconstructed datâX in the original N −
dimensional space results from the product withVT

Thus the reconstructed data matrixX̂ corresponds to a re-
duced rank approximation of the original data matrix with a
possibly modified eigenvalue spectrum. But the reconstruc-
tion does not preserve the Hankel structure of the original
data matrix (see eqn. 1). To rectify this, each anti-diagonal
element is substituted by the corresponding average of all
entries of the anti-diagonal. Finally, the embedding is re-
versed to obtain the reconstructed signalx̂[k] which is an
enhanced version of the original signal.

III. SVD AS FILTER BANKS

Signal enhancement as it was sketched above can also be
addressed employing linear invariant systems theory. In the
following we discuss the application of a bank of finite im-
pulse response (FIR) filters, where analysis and synthesis
filter pairs are connected in parallel. Note that eqn. (2)
can be expressed as a weighted superposition of terms re-
lated with the non-zero singular values/eigenvalues and cor-
responding eigenvectors of the subspace model. Employing
the subspace modelV = [v∗1,v∗2, . . . ,v∗N ], and using
block matrix operations, the termŝXn areM × N matri-
ces of rank one. The reconstructed data matrix can then be
expressed as

X̂ = Xv∗1p11v
T
∗1 + . . . + Xv∗NpNNvT

∗N

= y∗1p11v
T
∗1 + · · · + y∗NpNNvT

∗N =

N
∑

n=1

X̂n(3)

wherev∗n, n = 1, . . . , N represent analysis or synthesis
filter coefficients. In Hansenet al. [5], a filter bank archi-
tecture is proposed where formally analysis and synthesis

filters operate on trajectory matrices with a Hankel and a
Toeplitz structure, respectively, to include the diagonalav-
eraging [4] during synthesis.
However, in the framework of linear invariant systems the-

ory, the filter bank structure needed to achieve the output
time serieŝx[k] should be provided by the input time series
x[k] instead of by the trajectory matrix. Hence we propose
an approach based on filter responses and related transfer
functions rather than on matrix manipulations.
As mentioned above, each columny∗n, n = 1, . . . , N of

the projected dataY is obtained viay∗n = Xv∗n. Each
element of theM ×1 vectory∗n is the dot product between
then−th eigenvector and a row of the data matrix. But this
data manipulations can also be formulated as the weighted
sum of a sequence of samples of the original time series,

yn[k] =

N
∑

i=1

vinx[k + i − 1] (4)

where1 ≤ k < M andyn[k] are the elements of thenth
column of matrixY, i.e, y∗n . Therefore, they∗n hasM
samples starting by time indexk = 1, like in the first col-
umn of the matrixX. The entries of the vectorv∗n, the
n − th column of the subspace model, are the coefficients
of an anti-causal finite impulse response (FIR) filter as the
output at time indexk depends on input samples at time
indexk, k + 1 . . . k + N − 1.
The transfer functionHn(z) of the analysis step can be

computed by substituting in eqn. (4) every delay opera-
tion by the correspondingz transform [9]. Therefore by
transformingx[k] to X(z =

∑∞

−∞
x[k]z−k, x[k ± d] to

z±dX(z) andyn[k] to Yn(z), the filtering operation can be
formulated using the following transfer function

Hn(z) =
Yn(z)

X(z)
= (v1n + v2nz1 + . . . vNnz(N−1)) (5)

This transfer functionHn(z), n = 1, . . . , N results from
an output-input ratio and constitutes the analysis block asit
decomposes the input into several componentsyn[k], n =
1, . . . , N . In filter bank terminology, the analysis filter is
then followed by the synthesis filter which should combine
components to form a new signal. To facilitate the expo-
sition, let’s consider then-th term of eqn. (3) and assume
pnn = 1 for simplicity. In that case then-th contribution to
the reconstructed data matrix is

X̂n = Xv∗nvT
∗n = y∗nvT

∗n. (6)

Therefore each column of the rank-one matrixX̂n is a
scaled version ofy∗n

X̂n =















v1nyn[1] v2nyn[1] . . . vNnyn[1]
v1nyn[2] v2nyn[2] . . . vNnyn[2]
v1nyn[3] v2nyn[3] . . . vNnyn[3]

...
...

...
v1nyn[M ] v2nyn[M ] . . . vNnyn[M ]















(7)



Obviously, the resulting matrix does not have the Hankel
structure of the original matrixX. But by replacing the en-
tries in each anti-diagonal of̂Xn by their average, an Han-
kel matrix is obtained again. Interestingly, the diagonal av-
eraging can equally well be formulated as a linear filtering
operation

x̂n[k] =
1

Nd

s
∑

i=l

vinyn[k − i + 1] (8)

where the quantitiesNd, l and s have values according
to number of elements in the anti-diagonals of the matrix
defined in eqn. (7). More specifically, the response can
be sub-divided into a transient and a steady state response
according to the following distinction:

• With N elements, eqn. (8) represents a steady state
response of the filter in the case ofN ≤ k ≤ M and
we haveNd = N , l = 1 s = N .

• With less thanN elements, eqn. (8) represents the
transitory response of the filter:

– if 1 ≤ k ≤ (N − 1) (upper left corner of the matrix
X̂n) then we haveNd = k, l = 1 ands = Nd;

– if (M+1) ≤ k ≤ K (lower right corner of the matrix
X̂n) then we haveNd = K−k+1, l = N−Nd+1
ands = N .

Note that the entries of the vectorv∗n, then − th column
of the subspace model, are the coefficients of a causal finite
impulse response (FIR) filter. Both cases can be unified by
formally settingym[k] = 0 for the time indicesk < 1 and
k > M , and always compute eqn. (8) as in the steady-state
case. Therefore, the transfer function for the synthesis filter
reads

Fn(z) =
X̂n(z)

Yn(z)
=

1

N
(v1n+v2nz−1+. . .+vNnz−(N−1))

(9)
Notice that the analysis(Hn(z)) and synthesis(Fn(z))

transfer functions differ by a scale factor (1/N ) and by
the sign of the powers ofz. Therefore the magnitudes of
the frequency response of both filters are related by a scale
factor (1/N ) and their phases are symmetric. The transfer
function of the global system is a cascade formed by the
projection step (analysis) and the reconstruction step with
diagonal averaging (synthesis) given by

Tn(z) =
X̂n(z)

X(z)
= Fn(z)Hn(z) =

N−1
∑

i=−(N−1)

tinzi (10)

The coefficientstin result from the product of two polyno-
mials with the same coefficients but powers of z with op-
posite sign, and thentin = t−in, i = 1, . . . , (N − 1) [9].
Therefore, the frequency responseTn(ejω) has the follow-
ing expression
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Fig. 1 - Spectogram of the signal with different SNR:left-SNR=40dB,
right-SNR=10dB.

Tn(ejω) = t0n +
N−1
∑

i=1

2tin cos(iω) (11)

wherej =
√
−1. The frequency response is a periodic real

function, with period equalω = 2π, hence corresponds to
a zero-phase filter. This means that each extracted compo-
nentx̂n[k] is always in-phase with its related originalx[k].
The orthogonal output sequencesyn[k], n = 1 . . .N of the
analysis step are filtered versions of the input sequencex[k]
and their energy content is given by the eigenvalue associ-
ated with the corresponding eigenvector (eigenfilter). The
scale factorpnn only changes the amplitude of the sequence
yn[k]. The total transfer function is finally obtained by
adding the transfer functions of the parallel branches of the
filter bank. The resulting output̂x[k] is a sum of the se-
lected signalŝxn[k], e.g, the outputs of the cascaded filter
pairs formed byHn(z) andFn(z). Notice, that the embed-
ding of the time-series as suggested by (1) leads to ananti-
causal filter for the analysis step and to acausal filter for the
synthesis step. Using alternative embedding procedures,
this property of the filters can interchange. Though exam-
ples of frequency responses of the eigenfilters are shown
graphically in [5], no analytical expressions of the filter re-
sponses are given. Instead, the present work also deduces
such closed-form analytical expressions for the analysis and
synthesis filters. Note that frequency responses of the com-
ponent filtersHn(z) andFn(z) cannot be given in closed-
form similar toTn(z) in (11) due to lacking symmetry prop-
erties of their coefficients [9]. But notice that the absolute
values of the frequency responses of all the filters have the
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Fig. 2 - Frequency responses ofT1(z), related with largest eigen-
value, along the frames computing model with :top-SNR=40dB,middle-
SNR=10dB ,bottom-SNR=0dB

same profile.

IV. D ISCUSSION ANDCONCLUSION

In this section we present illustrative examples of the fre-
quency response of eigenfilters for a segment of a speech
signal corrupted by additive gaussian noise.
Fig. 1 shows the frequency content of a noisy speech sig-

nal in each frame (spectrogram). Each frame correspond to
a segment of25ms (400 samples) with60% of overlap be-
tween the frames. In the first spectrogram the energy of the
signal is concentrated in the frames15 − 45 corresponding
to frequenciesf < 2000Hz. With decreasing the SNR, the
speech signal becomes increasingly corrupted and the fre-
quency content is distributed more uniformly (see Fig. 1,
right). The orthogonal subspace modelV was computed
for each frame usingK = 400 samples and an embedding
dimensionN = 30.
Fig 2 shows the frequency response ofT1(z), i.e. of
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Fig. 3 - Frequency responses ofTn(z), n = 1, . . . , N for 30th frame
using:top-SNR=40dB,middle-SNR=10dB ,bottom-SNR=0dB

the analysis/synthesis filter that corresponds to the largest
eigenvalue of the subspace models. This filter is clearly
centered in the region of the highest energy of the input sig-
nals. If the SNR is high (figure on left), the passband of
the filter matches the signal. Even when the energy of the
signal is low, the filter has its passband in low frequency
range. When the noise level increases, the passband of
the filter moves towards the high frequency range for the
frames without signal information (see figure on middle).
But whenSNR = 0dB, the filter is always centered on
the high-frequency range both in frames without or with
active voice signals. Fig. 3 shows the frequency response
of Tn(z), n = 1 . . . 30 computed using a frame with ac-
tive voice (the 30th frame). The differences on the profile
of the frequency responses is obvious. The filters were or-
dered according the values of the eigenvalues. It can be
seen that when the SNR is high, the first filters, associ-
ated with the largest eigenvalues, have their passband cen-
tered in the low frequency range, and the last filters, as-



sociated with the smallest eigenvalues, are centered in the
high-frequency range. Decreasing the SNR, the filters as-
sociated with the highest eigenvalues have passbands both
in the low-frequency band and in the high-frequency band
(see figure on middle). However, forSNR = 10dB, the
first five filters still concentrate their passband in low fre-
quency range. Finally, whenSNR = 0dB, the filters with
their passband in the high frequency range are the ones
corresponding to the largest eigenvalues, while the filters
centered in low frequency range correspond to the smallest
eigenvalues.
The interpretation of subspace-based methods as filter

banks helps to attain a clear-cut insight into the outcomes
of the method. By applying a linear invariant system theory
approach, analytical expressions of the frequency response
are deduced in this work. These results thus corroborate the
properties of the SVD steps referred to in previous works
[5], [4], [6].
By the frequency responses of the filter bank, correspond-

ing to the basis vectors of the subspace model, the fre-
quency content of the different components can be attained
easily. Eigenfilters are data adaptive, and the relevance
of one component to the energy of the input signal is de-
duced from the corresponding eigenvalue. Moreover, the
frequency profile of each component is determined only at
the projection step. However, in order to get a component
in phase with the input signal, the diagonal averaging is re-
quired.
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