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Complete breakdown of the Debye model of rotational relaxation near the
isotropic-nematic phase boundary: Effects of intermolecular correlations in
orientational dynamics

Prasanth P. Jose, Dwaipayan Chakrabarti and Biman Bagchﬂ
Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.

The Debye-Stokes-Einstein (DSE) model of rotational diffusion predicts that the rotational cor-
relation times 7, vary as [I(I + 1)]7', where I is the rank of the orientational correlation function
(given in terms of the Legendre polynomial of rank [). One often finds significant deviation from
this prediction, in either direction. In supercooled molecular liquids where the ratio 71 /72 falls con-
siderably below three (the Debye limit), one usually invokes a jump diffusion model to explain the
approach of the ratio 71 /72 to unity. Here we show in a computer simulation study of a standard
model system for thermotropic liquid crystals that this ratio becomes much less than unity as the
isotropic-nematic phase boundary is approached from the isotropic side. Simultaneously, the ratio
72/n (where 7 is the shear viscosity of the liquid) becomes much larger than hydrodynamic value
near the I-N transition. We have also analyzed the break down of the Debye model of rotational
diffusion in ratios of higher order rotational correlation times. We show that the break down of
the DSE model is due to the growth of orientational pair correlation and provide a mode coupling
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theory analysis to explain the results.

I. INTRODUCTION

The rotational diffusion model of Debye [1, £] was pro-
posed originally to explain dielectric relaxation of polar
molecules and to relate the observed relaxation time to
viscosity by the use of the Stokes-Einstein relation. The
Debye-Stokes-Einstein (DSE) model is primarily devised
to model the Brownian motion in orientational degrees of
freedom. The DSE model provides the following amaz-
ingly simple expression for the decay of the I-th rank
orientational correlation function C7 ()

Cr(t) = exp(—t/m), (1)
with
=11+ 1)kpT/Cr, (2)
where
Cr =60V (3)

In the above expression of rotational friction, V' is the
volume of the molecule in question, 7 is the viscosity of
the liquid, kp is Boltzmann constant and 7T is the tem-
perature. The above expressions predict the ratio of the
first and second-rank rotational correlation times, 71 /72,
to be equal to three. The higher rank rotational correla-
tion times also vary following the [I(I+ 1]~! dependence.
In the past, different aspects of DSE relationship have
been tested namely, (a) the shape dependence ﬂﬂ, 4, E],
(b) the viscosity dependence, and (c) the rank depen-
dence of the orientational relaxation, in simple as well as
complex liquids.

*Electronic address: bbagchi@sscu.iisc.ernet.inj
URL: http://sscu.iisc.ernet.in/prg/faculty/biman_bagchi.htm

In many cases, the ratio 71/ is found to fall be-
low three. In particular, in supercooled liquids, the
ratio is known to approach unity at low temperatures
and related issues (like translation-rotation decoupling)
that have given rise to considerable amount of discussion
6, [, 8, d, [id, i1, 02, (4, 14, {3, [i6, 7). One often
invokes the breakdown of Debye diffusion model, which
requires small angle Brownian rotational motion for its
validity, due to the emergence of large scale hopping in-
volving large angular jumps. The basic idea is that a
large jump leads to the decay of C} (t) of all rank [ at the
same time, so that all of them have similar correlation
times corresponding to the average waiting time for this
large jump to occur.

The case of 71/72 deserves particular attention be-
cause it is the oft discussed one. The sensitivity of these
two correlation times (and hence the respective correla-
tion functions) to intermolecular interactions is different.
When the rotating molecule has dipolar interactions with
the surrounding molecules, one expects the first rank ro-
tation to be more affected than the second rank one. This
is a manifestation of intermolecular correlation which is
reflected in the orientational pair correlation functions.
Thus, if we consider dipolar spheres (such Stockmayer
liquid), we should expect the ratio 7 /72 to be larger than
three. On the other hand, if the intermolecular interac-
tion has up-down symmetry (as in the case of molecules
with ellipsoid of revolution), the reverse could be true.
Thus, one may need to include the role of intermolecular
correlation to generalize the DSE model appropriately.

One ideal candidate to test the above argument re-
garding the role of equilibrium pair correlations is a sys-
tem of model mesogens undergoing the isotropic-nematic
(I-N) phase transition. The isotropic phase is both posi-
tionally and orientationally disordered while the nematic
phase is still positionally disordered but orientationally
ordered. Earlier experimental and simulations studies
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&, 119, 24, 21, 29, 23, 124] have demonstrated that exis-
tence of the orientational relaxation of nematogens near
I-N transition have similarities with that observed in the
supercooled liquids. The orientational order parameter
is defined by S = (P3(cos(f))), where 0 is the angle of the
orientation of the molecular axis with the director. In the
isotropic phase, S = 0 for infinitely large systems while
it is non-zero (around 0.5) in the nematic phase. The im-
portant point is that orientational correlation undergoes
rapid increase as the I-N phase boundary is approached
from the isotropic side. This large growth in correlation
would provide a testing ground of the rotational diffusion
model and the role of intermolecular correlations.
Different molecular models have been used to test the
DSE in molecular simulations. In a molecular dynam-
ics simulation study using the Gay-Berne intermolecular
potential [27], de Miguel et al. found the ratio 71 /72 to
be always less than three in the isotropic phase. They
found that the departure from the Debye limit was pro-
nounced when density was reduced or temperature was
increased; this deviation is a manifestation of the inertial
decay which gives a ratio [l + 1/1] for 7;/741. Vasan-
thi et al. in extensive molecular dynamics simulations
using the same model have studied the aspect ratio de-
pendence of the DSE relationship [26]. Recently Jose
and Bagchi have studied the breakdown of the DSE re-
lationship near the I-N phase transition in a system of
the Gay-Berne ellipsoids of revolution [27]. They have
shown that the relation between the rotational friction
and viscosity breaks down near the I-N phase transition.
The motivation of the present work comes partly from
recent reports of the observed similarity in the orienta-
tional relaxation between supercooled liquids and liquid
crystals.[1&, 19, 20, 21, 22, 23, 24] The deviation of the
rank dependence from the Debye model (Eq.2) has been
often discussed in the context of supercooled liquids. As
discussed earlier, this is attributed to the existence of
large angular jumps at low temperatures. In this work,
we investigated the rank dependence of the rotational
diffusion near the isotropic-nematic phase boundary. We
find that the ratio 71 /72 becomes much less than unity

as the isotropic-nematic phase boundary is approached
from the isotropic side. Simultaneously, the ratio 72/7
(where n is the shear viscosity of the liquid) becomes
much larger than hydrodynamic value near the I-N tran-
sition. We have also analyzed the breakdown of the De-
bye model of rotational diffusion in ratios of higher order
rotational correlation times. Theoretical analysis shows
that the breakdown of the DSE model can be attributed
to the growth of orientational pair correlation. We pro-
vide a mode coupling theory analysis to explain the re-
sults. Thus, the present analysis seems to suggest that
one need not always invoke large scale jump diffusion to
explain the decrease of the ratio 71 /7o from the Debye
limit. This view raises some interesting questions which
we address in the Conclusion.

In the next section, we describe the system and simu-
lation details. Results of our molecular dynamics simu-
lation study of a system of ellipsoids of revolution with
an aspect ratio equal to three along an isotherm and an
isochore across the I-N phase transition is presented in
the section [l These results show that the ratio 71 /7
can become much less than unity. This section also in-
cludes results for higher rank orientational time correla-
tion functions (OTCF). In section [Vl we present a the-
oretical analysis which can explain theoretical aspects of
these results. Section [V] provides a summary of our re-
sults and concluding remarks.

II. SYSTEM AND SIMULATION DETAILS

Here we consider a system of molecules with axial sym-
metry interacting with the Gay-Berne (GB) pair poten-
tial that has served as a standard model in the simulation
studies of thermotropic liquid crystals. In the GB pair
potential |28, 29], each molecule is assumed to be an el-
lipsoid of revolution having a single-site representation in
terms of the position r; of its center of mass and a unit
vector e; along its principal axis of symmetry. The GB
interaction between molecules ¢ and j is given by

UFP(rij, i, €5) = de(ij, €i,€5)(p;;'° — pi;°) (4)

where

Tij — a(f‘ij,ei,ej) + o9

Pij =

(5)

g0

Here oy defines the cross-sectional diameter, 7;; is the distance between the centers of mass of molecules ¢ and j, and
f;j = r;;/ri; is a unit vector along the intermolecular separation vector r;;. The molecular shape parameter o and
the energy parameter ¢ both depend on the unit vectors e; and e; as well as on f;; as given by the following set of

equations:
(e;-P; —ej-Pij)? ~1/2 (6)
1—x(ei - ej)

X { (e - ij +ej - F4)°

Fij,ei,e;) = o0 |1 -5
o(Fij e ;) UO[ 2\ 1+ (e o)



with x = (k% — 1)/(k% + 1) and

€(fij,ei,e;) = eole1(e;, €)]" [e2(Fi5, €15 €5)]" (7)

where the exponents p and v are adjustable, and

er(eie;) = [1— x*(e; - ;)] /2 (8)

and

Eg(f‘ij,ei,ej) =1-

with ' = (& Y/* —1)/(k' '/ +1). Here k = 0cc/0ss
is the aspect ratio of the molecule with o.. denoting the
molecular length along the major axis and oss = oy,
and K = €g5/€cc, where €55 and €., are the depth of
the minima of potential for a pair of molecules aligned
parallel in a side-by-side configuration and end-to-end
configuration, respectively. It follows that the GB pair
potential defines a family of potential models, each mem-
ber of which is characterized by a set of four parameters
(k, &', 1, v). In the present work, we employ the Gay-
Berne pair potential with the original and most studied
parametrization (3,5,2,1) [30].

All quantities are given in reduced units defined in
terms of the Gay-Berne potential parameters ey and og:
length in units of 0y, temperature in units of ¢y/kp, and
time in units of (mo2/e)'/2, m being the mass of the
ellipsoids of revolution. We set the mass as well as the
moment of inertia of the ellipsoids equal to unity. The
simulation is run in a microcanonical ensemble with the
system in a cubic box with periodic boundary conditions.
Further details of the simulation can be found elsewhere
[22].

The system of Gay-Berne ellipsoids of revolution with
aspect ratio 3 is studied separately along an isotherm
with density variation and along an isochore with tem-
perature variation across the I-N transition. As com-
pared to the density driven transition, the temperature
driven I-N transition in the present system is known to
be rather diffuse [30]. Next we present the results of our
study.

III. RESULTS
A. Density variation along an isotherm

In figure M we show the orientational order parame-
ter variation with density as a system of 576 Gay-Berne
ellipsoids of revolution transits across the I-N transition
along an isotherm at temperature T* = 1. The phase
transition is found to occur over a range of density be-
tween 0.305 and 0.315. In figures Pl(a) and B(b), we show
the decay of the single-particle orientational correlation
function for the first eight ranks in the isotropic phase

X [(ei- i +ej - )
2 1+ x'(e; - €5)

(e - iy —ej - T45)° (9)
1—x'(ei-e;) |
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FIG. 1: The evolution of the orientational order parameter
with density along the isotherm at temperature 7% = 1

and near the I-N phase boundary, respectively. The Ith
rank single-particle orientational time correlation func-

tion (OTCF) is defined as

_ 2 Pie0).6:(1)
> Pi(€i(0).€:(0))

where é;(0) is the unit vector along the symmetry axis of
the ith ellipsoid of revolution. The DSE model is found
to hold good for all ranks of the single-particle orienta-
tional time correlation functions shown in Fig. Bl(a) in the
isotropic phase. As the rank of the correlation function
increases, the relaxation time decreases.

Near the I-N phase boundary, as shown in FigBl the
relaxation of the single-particle OTCFs slows down con-
siderably for all ranks. However, C}(t) gets affected dif-
ferently for different [ values. The even and the odd
I-th C}(t) behave differently with the appearance of a
pronounced plateau in C3(¢) and Cj(t). Interestingly, a
similar decay behavior has been observed in supercooled
liquids [, [13].

Figure 2(b) shows that although the initial decay of
C5(t) and C5(t) is faster than that of C§(¢) and C5(¢),

Cr(t) (10)



FIG. 2: The time evolution of the single-particle orientational
time correlation functions, whose rank range from 1 to 8,
shown in a log-log plot at two densities corresponding to (a)
p*= 0.285; (b) p*=0.315. The curves are arranged in the
decreasing order of ranks from the left to the right in each
plot.

respectively, the decay becomes slower at longer times.
The even l-th correlation functions both develop a rather
long and distinct plateau. The decay of Cj(t) is par-
ticularly revealing because it shows all the four phases of
decay — the initial Gaussian, followed by the exponential,
then the crossover to the plateau and the final exponen-
tial decay.

In figure B, we show the evolution of the ratios 71 /72,
71/73, and 71/74 as increase in density drives the sys-
tem across the I-N transition. Note that away from the
I-N phase boundary in the isotropic phase, the ratios re-
main close to what are predicted by the Debye rotational
diffusion model. However, as the I-N phase boundary
is approached from the isotropic side, it is evident that
the Debye rotational diffusion model breaks down com-
pletely.

In figure @l we show the ratios between the second
rank orientational correlation time and the higher rank
(I = 3,4) orientational correlation times as a function
of density across the I-N transition. Note that the I-N
transition affects the second rank OTCF most due to the
up-down symmetry of the molecular model studied in the
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FIG. 3: The density variation of the ratios between the
first-rank orientational correlation time and the second, third,
and fourth rank orientational correlation times across the I-N
transition. The circles represent the data for 71 /72, the dia-
monds for 71 /73 and the triangles for 71 /74. The ratios are
scaled by the corresponding Debye predictions.
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FIG. 4: The ratios between the second-rank orientational
correlation time and the higher rank orientational correlation
times across the I-N transition. The triangles represent the
data for 72 /73 and the circles for 72/74. The ratios are scaled
by the corresponding Debye predictions.

present work. Figure Bl shows a cusp like behavior which
is well-known in the study of equilibrium critical phenom-
ena of finite sized systems. Its appearance in dynamics
suggests the existence of large scale fluctuations in the
orientational order parameter [31]. Since the second rank
orientational correlation function is associated with the
optical response of the system which undergoes dramatic
increase near the I-N transition [31], 2], the most affected
orientational memory function is the second-order one.
Microscopically this phenomenon may be understood
qualitatively in terms of the molecular field theory of



FIG. 5: The semi-log plot of the ratio 7;/n versus density
for different ! values. The circles show 7;/n for [ = 1, the
diamonds for | = 2, the squares for [ = 3, and the triangles
for | = 4. The filled symbols show the ratios for even values
of [.

Maier and Saupe 31,132, 33], where the molecule is con-
fined in an effective field created by its neighbors. This
effective potential is given by the expression

u; = —£15(3cos2(9i) -1)

V22 (11)

where A is constant independent of the temperature, vol-
ume, and pressure, V' is the molecular volume and 6; is
the angle between molecular axis with a preferred axis.
This effective potential grows as the order parameter in-
creases. Note that a 7 rotation of the molecular axis
relaxes C§(t) but not C5(t). This effect is manifested in
the higher order orientational correlation functions also.
However, a random orientation of the smaller angle less
than 7/2 is only required for the relaxation of the C}(t)
with [ > 3,4, .. etc. Hence the slow down of relaxation at
these ranks appears as S becomes significantly large. In
section IV, we present a quantitative theory to describe
these effects.

Another important aspect of the DSE which has been
a subject of intense study in the literature of supercooled
liquids is the viscosity (1) dependence of the time con-
stant (7;) of orientational correlation function. In figure
Bl we present the semi-log plot of this ratio against den-
sity. The ratio remains a constant in the isotropic phase
of the liquid crystals, in agreement with hydrodynamic
prediction. This is also in accordance with the earlier
simulation [27] which shows the ratio between the rota-
tional friction and the viscosity also shows similar behav-
ior.

Note that unlike in supercooled liquids, the growth in
the viscosity of the nematogens near the I-N transition
is not rapid [27]. Therefore, the ratio between 7; and 7
deviates from the DSE prediction only due to the growth
of 7;. It is also evident that the violation of the DSE is

0.6

FIG. 6: The evolution of the ratio between the first-rank and
the second-rank orientational correlation times with temper-
ature across the I-N transition (circles). The inclusion of the
scaling factor ensures that the ratio is equal to unity in the
Debye limit as shown by the dot-dashed line. On a different
scale shown on the right is the orientational order parameter
variation with temperature (squares).
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FIG. 7. The temperature dependence of the ratio between
the first-rank and the /th rank orientational correlation times
across the I-N transition for [ = 3, and 4. The inclusion of
the scaling factor ensures that the ratio is equal to unity in
the Debye limit as shown by the dot-dashed line.

found to be different for the odd and the even values of
I. In figure Bl the ratio between 7; and 7 for even [ values
grows more dramatically than that for odd [ values.
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FIG. 8: The temperature dependence of the ratio between the
second-rank and the /th rank orientational correlation times
across the I-N transition for [ = 3, and 4. The inclusion of
the scaling factor ensures that the ratio is equal to unity in
the Debye limit as shown by the dot-dashed line.

B. Temperature variation along an isochore

In this work, we have also studied orientational relax-
ation in a system of 500 Gay-Berne ellipsoids of revolu-
tion with the use of the same parameterization but along
an isochore at the density p = 0.32. The drop in temper-
ature drives the system from the isotropic to the nematic
phase with the growth in the orientational order. In par-
ticular, the single-particle second-rank orientational cor-
relation function decays with such a long time scale near
the I-N phase boundary that an integral second-rank ori-
entational correlation time is beyond the scope of the
present simulation study. The poor data quality at long
times with the present run length restricts us from having
a reasonable fit of the long-time decay. In order to have
an estimate of the second-rank orientational correlation
time for the sake of comparison of the rank-dependent
orientational correlation times, we define a correlation

time Tl/ (T) that is the time taken for the single-particle

[—th rank orientational correlation function to decay by
90% at a temperate T'. The prime is used to distinguish it
from the corresponding integral orientational correlation
time.

Fig. @ shows that the ratio 7'1/ / 7'2/ follows the Debye
behavior away from the I-N transition, but the onset of
the rapid growth of the orientational order parameter
near the I-N transition induces a marked deviation from
the Debye limit and the ratio falls rapidly. On the other
hand, the ratios 71 /7; go through maxima on transit from
the isotropic phase to the nematic phase for both [ = 3
and [ = 4 as shown in Fig. [d and the maxima corre-
spond to the temperature below which the orientational
order parameter is on the rapid rise. Figure [ illustrates

6

the temperature behavior of the ratios 72/ / Tl/ across the
I-N transition for [ = 3, and 4. While only a small devi-
ation from the Debye behavior is apparent even at high
temperatures away from the I-N transition, the onset of
the growth of the orientational parameter marks a sharp
increase in these ratios. The results, embodied in Figs. B
B, suggest that orientational correlation, that builds up
across the I-N transition, plays a key role in deviation
from the Debye behavior of the orientational correlation
times.

The contrast between the study along an isotherm and
that along an isochore reveals the importance of the role
played by the intermolecular potential in the breakdown
of the DSE relation. In the study along the isotherm,
the free volume that is available for the rotation reduces
thus leading to the formation of the orientational caging.
In contrast, when temperature is reduced, the attractive
part of the inter molecular potential becomes more dom-
inant and results in the formation of the orientational
caging that arrests the orientational random walk of the
molecules. The above difference arises because temper-
ature variation leads only to small changes in density
because of the dominance of the repulsive part of the
potential in determining the liquid structure.

IV. THEORETICAL ANALYSIS OF
ORIENTATION RELAXATION

Here we present a mode coupling theory (MCT) anal-
ysis of the above relaxation behaviour. MCT has a long
and honorable history in describing dynamics near phase
transitions [34, B, B6]). Our starting point of the the-
oretical analysis is the Zwanzig-Mori continued fraction
representation of the frequency dependent orientational
time correlation function, Cj(z) (31, 38, 39, 40],

1

I DkET
R (e e

C(2) = (12)

where [ is the moment of inertia and I';(2) is the Laplace
frequency (z) and rank dependent memory function. The
latter is determined by the torque-torque correlation
function. In general, it is very difficult to determine
this correlation function from first principles, but as a
first approximation, we would combine input from the
mode coupling theory with that from the time depen-
dent density functional theory to obtain an expression for
the memory function, I';(z), which can be used to under-
stand the reasons for the breakdown of the DSE model.
Near the I-N transition the memory function I'(z) can be
written as a sum of two parts

[y(z) = TP 4179 (2), (13)

where the bare part of the memory function is assumed
to be rank and frequency independent. This can be de-
scribed by the two-body (binary) collision model. Note
that in conjunction with EqIIZ I'**"¢ leads to the DSE



behaviour. The singular part of the memory function
contains effects of intermolecular correlation and is rank
dependent. It is given by |18, 19, 4(],

sin 3kBTp o —z
7™ (z) = 87r31/0 dt e t/o dkk2chlm VFim (K, t).

(14)
In the above equation, I'; is the rank and frequency de-
pendent memory function. This is a function of the
l,1, m component of the wavevector dependent direct cor-
relation function ¢y, (k) (in the inter molecular frame).
Fim(k,t) is the [, m component of the orientation depen-
dent self-intermediate scattering function. The Fy,, (k,t)
is defined in terms of the spherical harmonics as

Fin(k, ) = (X COTOY, (0, 0¥, (2,)) . (15)

The single particle position and orientation dependent
P(r—r',t—¢,Q,Q) memory function is related to the
torque-torque correlation function through the density
functional theory by following the fluctuation dissipation
theorem [37,40]. Note that I';""?(z) contains the integra-
tion over the wave vector dependence. The slow down of
the relaxation of single particle orientational correlation
function is related to the nature of the component of the
dynamics structure factor.

It is important to note that the rotational friction de-
pends on the rank of the orientational correlation func-
tion and this friction differs from rank to rank because
of vastly different wave vector dependence of Fy,, (k,t),
for different ¢, particularly at low wavenumbers. Near
the I-N transition, due to existence of large wave length
fluctuations, the k¥ — 0 component of the Fy(k,t) un-
dergoes a very slow decay and this is responsible for the
slow down of the relaxation of the C3(¢). In this limit,
the expression for Fj, (k,t) is given by [31]

_1(+1)DRt
Fim(k,t) = Sim(k)e  Sim® | (16)
where S, (k) is the orientation dependent structure fac-
tor and Dpg is the rotational diffusion coefficient. The

Sim (k) is given by the expression
Sim(k) = (0 Yi (Q,00Yim (@, 1)) (1)

Near the I-N transition, Soo(k) grows as 1/B*k* (B =

2
= (dcldl’ilgg(k)) i ). The growth of orientational pair cor-
=0

relation with the approach of the I-N transition is evident
in figure@l Note that the starting from density p*=0.305,
the orientational pair correlation function becomes non-
zero even at large intermolecular separations. This is
reflected in the rapid growth of Sao(k) as k — 0 near the
I-N transition.

Combination of the above factors provides the follow-
ing simple expression for the frequency dependence of the
singular part of the memory kernel

I5™9(2) = A/ (18)

FIG. 9: The g220 component of the pair correlation function
versus the pair separation at several densities across the I-N
transition. The curves staring from the bottom to the top are
corresponding to densities between p* = 0.285 and p* = 0.315
on a grid of dp* = 0.005.

where A is a numerical constant [1&]. Note that such
a power law dependence is absent from all odd ¢-th T’y
but in principle present in all the even ¢. However, as ¢
increases, the decay becomes increasingly inertial and the
role of intermolecular correlation becomes weak beyond
£ =4. But for / = 2 and ¢ = 4, the inverse square root
dependence of the rotational memory function leads to
a markedly slower, power law decay, as seen from figure

2(b).

Physically, this power law is a manifestation of the
growth of the pseudo-nematic domains near the I-N phase
boundary. A particle inside this domain feels a localiz-
ing potential which makes its rotation difficult. However,
even within such a domain, a rotation of an individual
particle by 180°(that is, by ) is possible because of the
up-down symmetry of the particle. However, in contra-
diction to the conceptualization prevalent in supercooled
liquid literature, here such a half-cycle rotation relaxes
only the odd rank correlation functions, leaving the even
ranked ones unchanged. In the MCT description, the
influence of the localizing potential enters through the
two particle direct correlation function (cgsm (k)) and the
static structure factor Sgn, (k). Just as in the Maier-
Saupe theory, the present mean-field theory description
can capture the rank dependence of the effective, localiz-
ing potential.

The above mode coupling theory analysis is by no
means complete, but it provides a semi-quantitative ex-
planation of the observed rank dependence of the orien-
tational correlation time near the I-N transition, in terms
of the rapid growth of equilibrium orientational pair cor-
relation function.



V. CONCLUDING REMARKS

Let us first summarize the main results presented
here. We study a system of Gay-Berne model meso-
gens along an isotherm and an isochore separately across
its isotropic-nematic phase transition to investigate the
rank dependent single-particle orientational relaxation
from the perspective of the Debye behavior. Our results
demonstrate that orientational correlation that starts
growing near the I-N transition as it is approached from
the isotropic side induces a marked deviation from the
Debye behavior. We present a theoretical analysis of
our results within the framework of the mode-coupling
theory. This mode coupling theory analysis provides a
semi-quantitative explanation of the observed rank de-
pendence of the orientational correlation time near the
I-N transition. This explanation does not invoke the ex-
istence of any large scale angular jump motion which
randomizes and thereby leads to the decay of correlation
of all ranks with the same rate. Instead, our analysis
attributes the non-Debye rank dependence to the rapid
growth of equilibrium orientational pair correlation func-

tion.

As already mentioned, an earlier onset of stretching
in the even rank correlation functions than in the corre-
sponding odd rank functions has been observed in super-
cooled liquids as well [9, [13]. This similarity is indeed
interesting and deserves further study.

In view of the results presented here, a comparative
study between dielectric relaxation (which essentially
measures the £ = 1 correlation function) and light scat-
tering or fluorescence depolarization or even NMR (all
of these measure the ¢ = 2 correlation function) should
be worthwhile. In fact, a detailed theoretical analysis of
dielectric relaxation near the I-N phase boundary seems
to be lacking.
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