438 research outputs found

    Relativistic MHD Simulations of Jets with Toroidal Magnetic Fields

    Full text link
    This paper presents an application of the recent relativistic HLLC approximate Riemann solver by Mignone & Bodo to magnetized flows with vanishing normal component of the magnetic field. The numerical scheme is validated in two dimensions by investigating the propagation of axisymmetric jets with toroidal magnetic fields. The selected jet models show that the HLLC solver yields sharper resolution of contact and shear waves and better convergence properties over the traditional HLL approach.Comment: 12 pages, 5 figure

    Two-component jet simulations: II. Combining analytical disk and stellar MHD outflow solutions

    Get PDF
    Theoretical arguments along with observational data of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. Each component's contribution depends on the intrinsic physical properties of the YSO-disk system and its evolutionary stage. The main goal of this paper is to understand some of the basic features of the evolution, interaction and co-existence of the two jet components over a parameter space and when time variability is enforced. Having studied separately the numerical evolution of each type of the complementary disk and stellar analytical wind solutions in Paper I of this series, we proceed here to mix together the two models inside the computational box. The evolution in time is performed with the PLUTO code, investigating the dynamics of the two-component jets, the modifications each solution undergoes and the potential steady state reached.Comment: accepted for publication in A&

    Two-component jet simulations: I. Topological stability of analytical MHD outflow solutions

    Full text link
    Observations of collimated outflows in young stellar objects indicate that several features of the jets can be understood by adopting the picture of a two-component outflow, wherein a central stellar component around the jet axis is surrounded by an extended disk-wind. The precise contribution of each component may depend on the intrinsic physical properties of the YSO-disk system as well as its evolutionary stage. In this context, the present article starts a systematic investigation of two-component jet models via time-dependent simulations of two prototypical and complementary analytical solutions, each closely related to the properties of stellar-outflows and disk-winds. These models describe a meridionally and a radially self-similar exact solution of the steady-state, ideal hydromagnetic equations, respectively. By using the PLUTO code to carry out the simulations, the study focuses on the topological stability of each of the two analytical solutions, which are successfully extended to all space by removing their singularities. In addition, their behavior and robustness over several physical and numerical modifications is extensively examined. It is found that radially self-similar solutions (disk-winds) always reach a final steady-state while maintaining all their well-defined properties. The different ways to replace the singular part of the solution around the symmetry axis, being a first approximation towards a two-component outflow, lead to the appearance of a shock at the super-fast domain corresponding to the fast magnetosonic separatrix surface. Conversely, the asymptotic configuration and the stability of meridionally self-similar models (stellar-winds) is related to the heating processes at the base of the wind.Comment: Accepted for publication in A&

    The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution

    Get PDF
    The stability properties of one-dimensional radiative shocks with a power-law cooling function of the form Λρ2Tα\Lambda \propto \rho^2T^\alpha are the main subject of this work. The linear analysis originally presented by Chevalier & Imamura, is thoroughfully reviewed for several values of the cooling index α\alpha and higher overtone modes. Consistently with previous results, it is shown that the spectrum of the linear operator consists in a series of modes with increasing oscillation frequency. For each mode a critical value of the cooling index, αc\alpha_\textrm{c}, can be defined so that modes with α<αc\alpha < \alpha_\textrm{c} are unstable, while modes with α>αc\alpha > \alpha_\textrm{c} are stable. The perturbative analysis is complemented by several numerical simulations to follow the time-dependent evolution of the system for different values of α\alpha. Particular attention is given to the comparison between numerical and analytical results (during the early phases of the evolution) and to the role played by different boundary conditions. It is shown that an appropriate treatment of the lower boundary yields results that closely follow the predicted linear behavior. During the nonlinear regime, the shock oscillations saturate at a finite amplitude and tend to a quasi-periodic cycle. The modes of oscillations during this phase do not necessarily coincide with those predicted by linear theory, but may be accounted for by mode-mode coupling.Comment: 33 pages, 12 figures, accepted for publication on the Astrophysical Journa

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure

    Aerial scene classification through fine-tuning with adaptive learning rates and label smoothing

    Get PDF
    Remote Sensing (RS) image classification has recently attracted great attention for its application in different tasks, including environmental monitoring, battlefield surveillance, and geospatial object detection. The best practices for these tasks often involve transfer learning from pre-trained Convolutional Neural Networks (CNNs). A common approach in the literature is employing CNNs for feature extraction, and subsequently train classifiers exploiting such features. In this paper, we propose the adoption of transfer learning by fine-tuning pre-trained CNNs for end-to-end aerial image classification. Our approach performs feature extraction from the fine-tuned neural networks and remote sensing image classification with a Support Vector Machine (SVM) model with linear and Radial Basis Function (RBF) kernels. To tune the learning rate hyperparameter, we employ a linear decay learning rate scheduler as well as cyclical learning rates. Moreover, in order to mitigate the overfitting problem of pre-trained models, we apply label smoothing regularization. For the fine-tuning and feature extraction process, we adopt the Inception-v3 and Xception inception-based CNNs, as well the residual-based networks ResNet50 and DenseNet121. We present extensive experiments on two real-world remote sensing image datasets: AID and NWPU-RESISC45. The results show that the proposed method exhibits classification accuracy of up to 98%, outperforming other state-of-the-art methods

    Low-mass planets in nearly inviscid disks: Numerical treatment

    Full text link
    Embedded planets disturb the density structure of the ambient disk and gravitational back-reaction will induce possibly a change in the planet's orbital elements. The accurate determination of the forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm (FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested. In this paper we study the process of planet-disk interaction for small mass planets of a few Earth masses, and reanalyze the numerical requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic conditions. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To strengthen our conclusions we perform a detailed numerical comparison where several upwind and Riemann-solver based codes are used with and without the FARGO-algorithm. With respect to the wake structure and the torque density acting on the planet we demonstrate that the FARGO-algorithm yields correct results, and that at a fraction of the regular cpu-time. We find that the resolution requirements for achieving convergent results in unshocked regions are rather modest and depend on the pressure scale height of the disk. By comparing the torque densities of 2D and 3D simulations we show that a suitable vertical averaging procedure for the force gives an excellent agreement between the two. We show that isothermal and adiabatic runs can differ considerably, even for adiabatic indices very close to unity.Comment: accepted by Astronomy & Astrophysic

    Velocity asymmetries in YSO jets: Intrinsic and extrinsic mechanisms

    Get PDF
    It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In order to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]Comment: accepted for publication in A&
    corecore