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ABSTRACT

The stability properties of one-dimensional radiative shocks with a power-law cooling function of the form
� / �2T� are the main subject of this work. The linear analysis originally presented by Chevalier & Imamura is
thoroughly reviewed for several values of the cooling index � and higher overtone modes. Consistently with
previous results, it is shown that the spectrum of the linear operator consists of a series of modes with increasing
oscillation frequency. For each mode a critical value of the cooling index, �c , can be defined so that modes with
� < �c are unstable while modes with � > �c are stable. The perturbative analysis is complemented by several
numerical simulations to follow the time-dependent evolution of the system for different values of �. Particular
attention is given to the comparison between numerical and analytical results (during the early phases of the
evolution) and to the role played by different boundary conditions. It is shown that an appropriate treatment of
the lower boundary yields results that closely follow the predicted linear behavior. During the nonlinear regime, the
shock oscillations saturate at a finite amplitude and tend to a quasi-periodic cycle. The modes of oscillations during
this phase do not necessarily coincide with those predicted by linear theory but may be accounted for by mode-
mode coupling.

Subject headinggs: binaries: close — hydrodynamics — instabilities — methods: numerical — shock waves

1. INTRODUCTION

Radiative shock waves are believed to play a key role in a
variety of different astrophysical environments, including mag-
netic cataclysmic variables (Wu 2000; Cropper 1990), jets from
young stellar objects (Hartigan et al. 1994), magnetospheric
accretion in T Tauri stars (Calvet & Gullbring 1998), colliding
stellar winds (Stevens et al. 1992; Antokhin et al. 2004), and
supernova remnants (Kimoto & Chernoff 1997; Blondin et al.
1998; Walder & Folini 1998).

Most of the earlier theoretical investigation has been motivated
by the dynamics of accreting shocks in magnetic cataclysmic
variables. In these systems, a strongly magnetized white dwarf
(106 GPBP 108 G) accretes matter directly from a late-type star
without the formation of a disk. Instead, the mass transfer pro-
cess is magnetically channeled and matter accumulates through
a standoff shock on a small fraction of the stellar surface. At tem-
peratures of 108–109 K, the shock-heated plasma radiates its
energy via optically thin bremsstrahlung becoming a powerful
source of X-rays.

It has been shown that, under certain circumstances, the
postshock flow is subject to a global thermal instability (more
precisely, an overstability) caused by rapid variations of the
cooling timescale with the shock speed. The instability drives
the shock front to oscillate with respect to its stationary posi-
tion, causing variations in the amount of radiation emitted from
the postshock region. The instability mechanism has been in-
voked in the past to explain the optical quasi-periodic oscil-
lations (QPOs) observed in AM Her–type systems (Larsson
1992; Middleditch et al. 1997; Wu 2000). Similarly, a relevant
issue arises in questioning the validity of steady shock models
with shock velocities vs k130 km s�1, routinely used in inter-

preting emission-line observations from interstellar shocks (Innes
et al. 1987a, 1987b; Gaetz et al. 1988; Sutherland et al. 2003,
hereafter SBD03).

The nature of the instability was first studied analytically
by Chevalier & Imamura (1982, hereafter CI82), who presented
a linear stability analysis of planar radiative shocks with volu-
metric cooling rate � / �2T�. CI82 showed that the shock has
multiple modes of oscillation, and the stability of a particular
mode depends on the value of the cooling index �. In general,
higher power dependencies on the temperature were shown to
inhibit the growth of instability. Thus, the fundamental mode
was shown to become unstable for �P 0:4, while the first and
second harmonics are destabilized when �P 0:8. Higher order
harmonics were not considered by CI82.

Perturbative studies of one-temperature flowswith a power-law
cooling function were afterward considered by several authors.
Imamura (1985) presented a linear stability study of radiative
shocks where the cooling function had a weaker dependence on
density, i.e., � / �T�. Bertschinger (1986) examined the struc-
ture of spherical radiative shocks and also considered the effects
of nonradial perturbations. He showed that modes that are stable
to radial perturbations may become unstable for small transverse
wavenumbers. For sufficiently large wavenumbers, however, all
modes are eventually stabilized.

Effects due to cyclotron emission were considered in
Chanmugam et al. (1985), Imamura et al. (1991), and Wu et al.
(1992, 1996). Noise-driven models were proposed by Wood
et al. (1992). Effects of gravity were studied by Houck &
Chevalier (1992), while magnetic field effects were consid-
ered by Edelman (1989a, 1989b), Tóth & Draine (1993), and
Hujeirat & Papaloizou (1998) in the two-dimensional case.
Dgani & Soker (1994) considered radiative shocks with a mass-
loss term.

Recently, Yamada & Nishi (2001) investigated the stability
properties of shock-compressed gas slabs by introducing a cold
layer of finite thickness. They considered both symmetric and an-
tisymmetric modes and reported the existence of quasi-oscillatory
modes, in addition to the overstable ones.
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Stability properties of radiative shocks with unequal ion
and electron temperatures were investigated by Imamura et al.
(1996), while flows with multiple cooling functions (i.e.,
bremsstrahlung and cyclotron) were examined in both the single-
and two-temperature regimes by Saxton et al. (1997, 1998),
Saxton (1999, 2002), and Saxton & Wu (1999, 2001). Addi-
tional references can be found in the review by Wu (2000).

Investigation of the full time-dependent problem has also
received extensive attention over the past two decades and
several numerical simulations have been carried along. The
oscillatory instability was discovered in the first place numer-
ically by Langer et al. (1981, 1982), who investigated spheri-
cally symmetric accretion onto magnetized white dwarfs. They
showed that flows with volumetric cooling rates � � �2T�

become unstable when �P 1:6, a limit subsequently revised to
�P0:6 in Langer et al. (1983). In the case of bremsstrahlung
cooling (� ¼ 1

2
), the shock position was shown to undergo peri-

odic oscillations over the surface of the white dwarf. Imamura
et al. (1984) and Imamura (1985) used a Lagrangian code to
investigate the stability of radiative shocks with a power-law
cooling function � � �2T�. Effects of gravity, thermal con-
duction, and unequal electron and ion temperatures were also
included. In Imamura et al. (1984), the critical values of �
(above which oscillations are damped) were shown to lie
somewhere in the range 1

3
P�P 1

2
and 1

2
P�P 0:6 for the fun-

damental and first overtone, respectively. Wolff et al. (1989)
considered both one- and two-temperature calculations; the
one-temperature calculations showed that the fundamental
mode is unstable for � ¼ 0:33, first and second harmonic are
unstable when � ¼ 0:65, while the system is stable at � ¼ 1.
The one-dimensional calculations of Strickland & Blondin
(1995, hereafter SB95) showed that for flows incident into a
wall, large-amplitude oscillations are damped when �k 0:5.
SB95 also considered perturbed steady state models, showing
that power-law cooling functions with�P 0:75 produced shock
oscillations that saturated at a finite amplitude. The results of
SB95 were recently extended by SBD03 to a more realistic
cooling function.

Most results of the previous numerical investigations, how-
ever, bear no clear relation with the predicted linear behavior,
and a direct comparison with perturbative studies has proven
to be only partially successful. Although the salient features of
thermally unstable shocks have been commonly reproduced,
the modes of instabilities cannot always be identified with the
linear ones, with the exception of one or two modes. Besides,
controversies exist on the value of the critical� above which the
system should become stable. These apparent inconsistencies
may be partially due to the fact that most calculations do not
include a stationary solution in their initial condition, which
makes the problem inherently nonlinear since the very beginning.
Moreover, a substantial disagreement exists between Eulerian
and Lagrangian calculations and on the numerical treatment of
the lower boundary condition that plays a crucial role in the dy-
namics of the post shock flow.

Here I wish to present some new and detailed calculations in
an attempt to settle part of these controversies. The results of
this work will also serve as a basis for future extensions, where
effects of magnetic fields and more realistic cooling functions
will be considered.

The paper is organized as follows. In x 2 the problem is
defined and the relevant equations are introduced. In x 3 the
stability properties of one-dimensional planar radiative shocks
are reviewed in more detail, while in x 4 numerical simulations
are presented with particular emphasis to the comparison with

linear theory and to the choice of boundary conditions. A new
time-dependent treatment of the lower boundary is introduced
and the details of implementation are given in the Appendix.

2. STATEMENT OF THE PROBLEM AND EQUATIONS

Consider a one-dimensional supersonic flow with uniform
density �in and velocity vin , initially propagating in the negative
x-direction, i.e., vin ¼ �jvinj. The flow is brought to rest by the
presence of a rigid wall located at x ¼ 0, and a shock wave forms
at some finite distance xs from the wall. Through the shock, the
bulk kinetic energy of the incoming gas is converted into thermal
motion and the flow decelerates to subsonic velocities. In the post-
shock region, the thermal energy of the accreting gas is radiated
away by cooling processes.
In steady state, the dynamical timescale is equal to the cool-

ing timescale, so a fluid element travels through the postshock
region and cools exactly to zero temperature by the time it
reaches the wall.
In several areas of interest and to make the problem more

tractable, radiative losses are treated in the optically thin regime
and the cooling rates are normally specified as functions of the
temperature, density, and relative abundances. In this work it is
assumed that the volumetric cooling rates can be described by a
single power-law (in temperature) function

�(�; p) ¼ a�2 p

�

� ��

; ð1Þ

where a is a physical constant depending on the particular cool-
ing process, � is the cooling index, and � and p are, respec-
tively, the density and pressure of the gas.
The problem of a supersonic flow into a wall is, of course, a

simplified abstraction of a more complex and specific physical
setting. Effects due to thermal conduction, magnetic fields, and
multidimensional effects are neglected in this paper and will be
considered in future works. With these assumptions, the problem
can be described by the Euler equations for a one-temperature
flow in planar geometry:

@�

@t
þ �

@v

@x
þ v

@�

@x
¼ 0; ð2Þ

@v

@t
þ v

@v

@x
þ 1

�

@p

@x
¼ 0; ð3Þ

@p

@t
þ v

@p

@x
þ �p

@v

@x
¼ �(� � 1)C�2 p

�

� ��

; ð4Þ

where v is the fluid velocity, C is a constant, and an ideal
equation of state with constant specific heat ratio � has been
assumed. Equations (2)–(4) are put in a dimensionless form by
expressing density and velocity in units of their inflow values,
i.e., �in and jvinj. With this choice, the flow variables immedi-
ately ahead of the shock become � ¼ 1, v ¼ �1, and p ¼
1/(�M2), with M being the upstream Mach number.
The length scale of the problem enters explicitly through the

constant C in the energy equation (4):

C ¼ Lca�in vinj j2��3; ð5Þ

where Lc sets the reference length scale and a has already been
introduced in equation (1). In the following, lengths will be
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conveniently normalized to the stationary thickness of the cool-
ing region, so that the equilibrium position of the shock is
x ¼ 1. The explicit expression for C is given in x 3.1.

Relations between quantities ahead and behind the shock
follow from the Rankine-Hugoniot jump conditions:

�vs ¼
1

�s
¼ � � 1

� þ 1
þ 2

(� þ 1)M2
; ð6Þ

ps ¼
2

� þ 1
� � � 1

� (� þ 1)M2
; ð7Þ

where quantities immediately behind the shock are denoted
with the subscript s, and � ¼ 5/3 will be used in what follows.

3. LINEAR THEORY

Equilibrium configurations of radiative shock waves may
be thermally unstable. The nature of the instability may be in-
terpreted as follows.

Consider a stationary shock, initially in equilibrium; if, say,
the postshock temperature is slightly increased, a longer cool-
ing path will result and the excess pressure will force the shock
to move upward. In the frame of the shock, the velocity of the
incoming gas will increase even further and the postshock tem-
perature will rise according to the square of the preshock veloc-
ity. If radiative losses are described by a decreasing function of
the temperature, the cooling time will increase and the shock
will continue to move upward.

3.1. Perturbative Analysis

A perturbative study is carried out by properly linearizing
equations (2)–(4) around the steady state solutions denoted
with �0, v0, and p0. The perturbed location of the shock front is
written as

xs ¼ 1þ �

�
e�t; ð8Þ

where xs ¼ 1 is the shock equilibrium position in absence of
perturbation (� ¼ 0), � is the magnitude of the perturbation,
and � is a complex eigenfrequency. According to the normali-
zation scales introduced in x 2, time is expressed in units of
Lc/jvinj.

Following the same notations as in Saxton et al. (1998), it is
convenient to write � ¼ �R þ i�I, where the real part �R gives
the growth/decay term, while �I represents the oscillation fre-
quency. The nature of the instability is determined by the sign of
�R: modes with negative �R are stable, while modes with pos-
itive �R are unstable.

Perturbed physical variables take the form

q(�; t) ¼ q0(� ) 1þ kq(� )�e
�t

� �
; ð9Þ

where q2f�; v; pg, q0(� ) is the corresponding steady state
value, and the complex function kq(� ) describes the effects of
the perturbation. Here � is a spatial coordinate normalized so
that � ¼ 1 at the shock and � ¼ 0 at the wall:

� ¼ x

xs
� x 1� �

�
e�t

� �
þ O �2

� �
: ð10Þ

The fluid equations are linearized in a frame of reference that
is comoving with the shock; in this frame the derivatives of a
flow variable become

@

@t
! @

@t
þ @�

@t

@

@�
;

@

@x
! @�

@x

@

@�
: ð11Þ

Therefore, retaining only terms up to first order in �, one
has

@q

@t
� (q0kq� � �q00)�e

�t; ð12Þ

@q

@x
� q00 þ q00kq þ q0k

0
q �

q00
�

� �
�e�t; ð13Þ

where a primed quantity denotes a derivative with respect to �.
The steady state equations are obtained by collecting the

zeroth-order terms in the Euler equations; conservation of mass
and momentum is trivially expressed by

�0v0 ¼ �1; ð14Þ

�v0 þ p0 ¼ m; ð15Þ

where the integration constants on the right-hand sides may be
evaluated from the preshock values; hence, m ¼ 1þ 1/(�M2).

The pressure equation provides the explicit dependence on
the spatial coordinate; it can be put in closed integral form by
writing

� v0ð Þ ¼ f v0ð Þ
f vsð Þ ; ð16Þ

where

f vð Þ ¼
Z v

0

�yð Þ2�� yþ � mþ yð Þ½ �
mþ yð Þ� dy ð17Þ

and vs ¼ �(1þ 3/M2)/4 is the fluid velocity immediately be-
hind the shock (eq. [6]). Notice that, according to the normal-
ization units introduced in x 2, the constant C in equation (5)
takes the value

C ¼ � f vsð Þ
(� � 1)

: ð18Þ

Results pertinent to this section are evaluated in the strong
shock limit, M ! 1, so m ¼ 1, vs ¼ �1

4
, and � becomes the

only free parameter in the problem.
The integral in equation (17) can be evaluated analytically for

some specific values of the cooling index � (CI82), but it has
to be computed by numerical quadrature in the general case.
Notice that a steady state solution is possible only if the integral
converges, that is, if � < 3. Equation (16) can be inverted nu-
merically to express the postshock steady flow velocity v0 as a
function of �. The steady state profiles are shown in Figure 1.

The first-order terms in � provide three coupled com-
plex differential equations for the perturbations; using the
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unperturbed postshock velocity v0 as the independent variable,
they are

dk�
dv0

þ dkv
dv0

¼ � �

v 20
� k��

v0

d�

dv0
; ð19Þ

v0
dkv
dv0

� p0
dkp
dv0

¼ �kv�
d�

dv0
þ �

v0
þ kp � 2kv � k�; ð20Þ

v0p0 �
dkv
dv0

þ dkp
dv0

� �
¼ v0 þ �p0ð Þ

	
2� �ð Þk� þ �� 1ð Þkp

� kv þ
1

�



� p0kp�

d�

dv0
þ �; ð21Þ

where d�/dv0 is given by straightforward differentiation of
equation (16) together with equation (17).

For a given value of �, equations (19)–(21) have to be solved
by integrating from the shock front, where v0 ¼ vs, to the wall,
where v0 ¼ 0. The eigenmodes of the system are determined by
imposing appropriate boundary conditions to select the physi-
cally relevant solutions. At the shock front the jump conditions
for a strong shock (M ! 1) apply (Imamura et al. 1996;
Saxton et al. 1998):

k� ¼ 0; kv ¼ �3; kp ¼ 2: ð22Þ

At the bottom of the postshock region (� ¼ 0) the relevant
physical solutions must satisfy the stationary wall condition,
namely, that the flow comes to rest and the velocity must be os-
cillation free. This requires that both the real and imaginary parts
of kv(v0) vanish at v0 ¼ 0. The complex frequencies � for which
such solutions are possible identify the eigenmodes of the system.

The method of solution adopted here consists in minimiz-
ing the real function of two variables �(�R; �I) ¼ jkv(0)j. Here
jkv(0)j ¼ ½k2v;R(0)þ k2v; I(0)�

1=2
is the magnitude of the velocity

perturbation at the bottom of the postshock region; the values
of the real and imaginary parts, kv;R(0) and kv;I (0), are obtained
by direct numerical integration of equations (19)–(21) for a given
pair (�R, �I). In practice, since the system is singular at the origin,
integration proceeds from the shock up to some small value of v0,
denoted with v�. Setting v�P 10�3 did not produce significant
variations in the solution.

A preliminary coarse searchwith trial values of �R and �I shows
that, for a given value of �, an indefinitely long series of modes
exists. Following CI82, modes are labeled by increasing oscilla-
tion frequency, so that n ¼ 0 corresponds to the fundamental
mode, n ¼ 1 to the first overtone, n ¼ 2 to the second overtone,
and so on. The approximate position of eachmode n, (� (n)R , � (n)I ), is
then iteratively improved by repeating the search on finer subgrids
(in the complex � plane) centered around the most recent iteration
of � (n)R , � (n)I . The process stops once the relative error between two
consecutive iterations falls below 10�6. For practical reasons, the
search algorithm has been restricted to the first eight modes for
values of � uniformly distributed in the range �2 � � < 2. Re-
sults are shown in Figures 2 and 3, while modes for some specific
values of � are listed in Tables 1 and 2.
A mode is stable if the real part of the corresponding eigen-

value has negative sign and unstable otherwise. High-frequency
modes are characterized by growth rates that decrease faster
than low-frequency ones for increasing �. Hence, the funda-
mental mode (n ¼ 0) has the smallest growth/damping rate for

Fig. 2.—Growth/damping rates for the first eight modes as a function of �.
The solid line represents the fundamental mode n ¼ 0, whereas the different
symbols (described by the legend in the upper right portion of the plot) cor-
respond to the seven overtones 1 � n � 7. Eigenmodes with �R < 0 are stable,
whereas modes with �R > 0 are unstable.

Fig. 3.—Oscillation frequencies for the first eight modes as a function of �.
The symbols have the same meaning as in Fig. 2. Modes with 1 � n � 7 have
oscillation frequencies that are monotonically decreasing functions of �. For
the fundamental mode (n ¼ 0), however, �I increases to reach a maximum at
approximately � ¼ 1:1 and decreases afterward.

Fig. 1.—Steady state profiles for density, temperature, and velocity when
� ¼ 0. The ‘‘wall’’ is located at x ¼ 0 and supersonic gas flows from the right
to the left. Flow variables are normalized to their inflow values, and the
abscissa is expressed in units of shock height.
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�P 1, but the smallest damping rate for �k 1. Modes with
n � 1 have monotonically decreasing oscillation frequencies
while, for the fundamental mode, �I reaches a maximum value
at � � 1:1 and decreases afterward.

3.2. Critical �

For each mode n, a critical value of the cooling index, �(n)
c ,

may be defined, such that � (n)R ¼0 when �¼�(n)
c . Hence, the nth

mode is stable for� > �(n)
c and unstable when� < �(n)

c (Fig. 4).
The value of the critical � is computed by interpolating � with
a quartic polynomial passing through the two pairs of values
across which �R changes sign. Thus, the fundamental mode be-
comes stable for � > 0:388, the first harmonic for � > 0:782,
and so on. Values of �c are listed in Table 2 and shown in Fig-
ure 4. Interestingly, the sequence of critical � is not monotonic
with increasing n. Finally, notice that all (eight) modes become
eventually stable for �k0:92.

3.3. Linear Fit

By inspecting Figure 3, one can easily see that, for a given �,
the oscillation frequencies of the different modes are approxi-

mately equally spaced as n increases. In this respect, they re-
semble the modal frequencies of a pipe open at one end (Tóth
& Draine 1993; Saxton et al. 1998; Saxton 1999) and can be
described by a simple linear fit of the form

� (n)I ¼ �̃ (0)
I þ n��̃I; ð23Þ

with a small residual,P0.5%. In equation (23), �̃ (0)
I is the ‘‘fitted’’

fundamental frequency and��̃I is a frequency spacing depending
on the cooling index �. Furthermore, ��̃I is monotonically de-
creasing for increasing �. Values of �̃ (0)

I and ��̃I are given in
Tables 1 and 2.

4. TIME-DEPENDENT NUMERICAL SIMULATIONS

The results of the previous sections indicate that radiative
shocks in real astrophysical settings may be linearly unstable
and thus far from an equilibrium configuration. This calls for
the investigation of the full time-dependent problem where non-
linear effects may play a major role in the shock dynamics.

In what follows, the radiative shock evolution is analyzed
through a set of numerical simulations for different values of the

TABLE 1

Modes for Specific Values of �

� ¼ �2 � ¼ �3/2 � ¼ �1 � ¼ �1/2

Mode �R � I �R � I �R � I �R � I

n ¼ 0 ....................... 0.1671 0.2175 0.1353 0.2416 0.1031 0.2616 0.0693 0.2787

n ¼ 1 ....................... 0.3443 0.9581 0.2925 0.9566 0.2393 0.9510 0.1827 0.9399

n ¼ 2 ....................... 0.3905 1.7252 0.3360 1.7052 0.2786 1.6778 0.2161 1.6398

n ¼ 3 ....................... 0.4258 2.4622 0.3707 2.4277 0.3121 2.3820 0.2476 2.3204

n ¼ 4 ....................... 0.4538 3.2200 0.3957 3.1704 0.3334 3.1059 0.2642 3.0197

n ¼ 5 ....................... 0.4684 3.9594 0.4110 3.8945 0.3495 3.8112 0.2812 3.7012

n ¼ 6 ....................... 0.4918 4.7110 0.4319 4.6330 0.3669 4.5325 0.2938 4.3996

n ¼ 7 ....................... 0.4982 5.4548 0.4389 5.3604 0.3749 5.2400 0.3039 5.0819

�̃ (0) ��̃ �̃ (0) ��̃ �̃ (0) ��̃ �̃ (0) ��̃

0.2183 0.7486 0.2352 0.7324 0.2502 0.7129 0.2642 0.6882

Notes.—Real and imaginary parts of the complex eigenfrequencies � ¼ �R þ i�I are given for the first eight modes, n ¼ 0, : : : , 7,
and for negative values of�. The lower portion of the table shows the coefficients derived from the linear fit � (n)I ¼ �̃ (0)

I þ n��̃I, where �̃
(0) is

the ‘‘fitted’’ fundamental mode and��̃ is the frequency spacing.

TABLE 2

Modes for More Values of �

� ¼ 0 � ¼ 1/2 � ¼ 1 � ¼ 3/2

Mode �R � I �R � I �R � I �R � I �c

n ¼ 0 ................................ 0.0323 0.2934 �0.0101 0.3052 �0.0622 0.3121 �0.1346 0.3054 0.3881

n ¼ 1 ................................ 0.1201 0.9210 0.0476 0.8887 �0.0420 0.8307 �0.1668 0.7075 0.7815

n ¼ 2 ................................ 0.1450 1.5857 0.0602 1.5043 �0.0485 1.3698 �0.2020 1.1022 0.7949

n ¼ 3 ................................ 0.1739 2.2347 0.0851 2.1087 �0.0310 1.9068 �0.2141 1.5186 0.8822

n ¼ 4 ................................ 0.1841 2.9003 0.0865 2.7242 �0.0396 2.4386 �0.2128 1.9042 0.8578

n ¼ 5 ................................ 0.2021 3.5505 0.1052 3.3322 �0.0280 2.9850 �0.2416 2.3021 0.9111

n ¼ 6 ................................ 0.2081 4.2158 0.1030 3.9454 �0.0307 3.5106 �0.2390 2.7186 0.8959

n ¼ 7 ................................ 0.2214 4.8666 0.1188 4.5561 �0.0286 4.0605 �0.2375 3.0974 0.9196

�̃ (0) ��̃ �̃ (0) ��̃ �̃ (0) ��̃ �̃ (0) ��̃

0.2774 0.6553 0.2898 0.6088 0.3011 0.5359 0.3076 0.3998

Notes.—Real and imaginary parts of the complex eigenfrequencies � ¼ �R þ i�I are given for the first eight modes, n ¼ 0, : : : , 7, and for nonnegative values
of �. The rightmost column gives the critical value of � for a given mode n, such that for � > �(n)

c the nth mode is stable. The lower portion of the table lists the
coefficients derived from the linear fit.
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cooling index �. The early evolutionary phases are of particu-
lar interest since they can be directly compared to the expected
linear behavior, thereby providing an effective tool in validating
the correctness of the numerical method and choice of boundary
conditions. Nonlinear effects, on the other hand, describe the
long-term dynamics of the shock and play a crucial role in de-
termining whether a linearly stable mode may actually be non-
linearly unstable (Saxton 1999).

4.1. Numerical Method

The numerical approach followed here relies on the high-
resolution shock-capturing methods (see LeVeque et al. 1998
and references therein). These methods rely on a finite-volume,
conservative discretization of the Euler equations, thus being
particularly suitable in describing shock dynamics and, in gen-
eral, modeling flow discontinuities.

The starting point is the system of equations (2)–(4) written
in conservative form:

@U

@t
¼ � @F

@x
þ S; ð24Þ

where U ¼ (�; �v; E) is a vector of conservative quantities,
while

F ¼
�v

�v2 þ p

(E þ p)v

0
B@

1
CA; S ¼

0

0

�C�2��p�

0
B@

1
CA ð25Þ

are the flux and source term vectors, respectively. The total en-
ergy density E is expressed as the sum of internal and kinetic
terms:

E ¼ p

� � 1
þ �v2

2
: ð26Þ

The system of equations given by equation (24) is solved
numerically using PLUTO, a high-resolution Godunov-type code
for astrophysical fluid dynamics (A. Mignone et al. 2005, in
preparation).

With PLUTO, equation (24) is solved by operator splitting,
i.e., by treating the advection term @F/@x and the source term S

in separate steps. This approach is second-order accurate in time
if the two operators have at least the same accuracy and the order
into which they are applied is reversed every time step (Strang
1968).

During the advection step, a high-resolution, shock-capturing
Godunov-type formulation is adopted. Second-order accuracy
in space is based on a conservative, monotonic interpolation of
the characteristic fields (Colella 1990). Third-order temporal ac-
curacy is achieved by a multistep Runge-Kutta total variation
diminishing (TVD) algorithm (Gottlieb & Shu 1998):

U1
j ¼ Un

j þ�tnR̃j U
nð Þ;

U2
j ¼ 1

4
3Un

j þ U1
j þ�tnR̃j U

1
� �h i

;

Unþ1
j ¼ 1

3
Un

j þ 2U2
j þ 2�tnR̃j U

2
� �h i

: ð27Þ

Here R̃j(U) is a conservative, discretized approximation to the
flux term on the right-hand side of equation (24):

R̃j(U ) ¼ �
F̃jþ1=2 � F̃j�1=2

�xj
; ð28Þ

where j labels the computational zone with mesh spacing
�xj. The numerical fluxes F̃j�1=2 are computed using the ap-
proximate Riemann solver of Roe (1981). It should be men-
tioned that, although different numerical schemes have also
been employed, no significant differences were found in the re-
sults presented in x 4.3. The particular choice of Riemann solver
and interpolation algorithm is quite common and represents a
good trade-off between accuracy and computational time.
Cooling is treated in a separate source step, where

dE

dt
¼ �C�2��p�; ð29Þ

with C given by equation (18), is solved. Notice that only the
internal energy is affected during the source step, while den-
sity and velocity remain constant with the values provided by
the most recent advection step. Thus, the kinetic contribution
to the total energy can be discarded and equation (29) provides
an ordinary differential equation in the pressure variable only.
Integration for a time step �t n can be done analytically:

pnþ1 ¼ p1�� ��tnC(� � 1)�2��(1� �)½ �1= 1��ð Þ
; � 6¼ 1;

p exp �C(� � 1)�tn�2��½ �; � ¼ 1;

(

ð30Þ

where p and � are the pressure and density at the beginning of
the source step, respectively, and the suffix j has been omitted
for clarity of exposition.
Radiative losses are identically zero for T < Tc , where T ¼ p/�

is a dimensionless temperature and Tc is the cutoff temperature,
equal to the temperature of the incoming gas, i.e., Tc ¼ 1/(�M2).

4.2. Initial and Boundary Conditions

The computational domain is the region x0 � x � x1, where
x0 and x1 define the locations of the lower and upper boundaries,
respectively. As in the previous sections, lengths are expressed
in units of the cooling thickness in steady state; hence, the shock
is initially located at x ¼ 1.
Upstream, for 1 < x < x1, density, velocity, and pressure are

uniform and equal to the preshock values, i.e., � ¼ 1, v ¼ �1,

Fig. 4.—Critical value of the cooling index as a function of the mode
number n. For a given mode n, values of � > �c have negative growth rates
and thus are stable.
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and p ¼ 1/(�M2). At x ¼ x1 a constant supersonic inflow de-
fines the upstream boundary condition. Here x1 ¼ 5 and M ¼
40 are used for all simulations. Downstream, for x0 � x � 1,
flow quantities are initialized to the steady state solution given
by equations (14)–(16). The location of the lower boundary x0
depends on the particular boundary condition adopted.

The implementation of a suitable boundary condition at the
lower boundary poses a serious nontrivial problem for a num-
ber of different reasons. Close to the wall, density and velocity
experience rapidly varying sharp gradients, thus demanding
increasingly high resolution in order to resolve flow patterns.
This, in turn, has the inevitable consequence of restricting the
time step size in an explicit code. Although a number of differ-
ent strategies have been proposed, there is no general agreement
about what would be a ‘‘consistent’’ boundary condition. A com-
parison between four different approaches is considered in this
paper, and results are discussed in detail in the next sections.

A first approach consists of using a reflecting boundary con-
dition (RBC), commonly adopted (Plewa 1995; SB95) to sim-
ulate the presence of a rigid wall or to enforce axial or planar
symmetry. It imposes symmetric profiles (with respect to the
‘‘wall’’ position x0 ¼ 0) on density and pressure, while the ve-
locity is antisymmetric, i.e., v (�x) ¼ �v (x). Hence, at the lower
boundary, the velocity is zero at all times while density and pres-
sure have zero gradient.

A second approach adopts ‘‘fixed,’’ time-independent bound-
ary conditions (FBC) where flow variables are kept constant at
the steady state values at x ¼ x0. In this case, x0 ¼ 10�3 can be
safely used, since it is put sufficiently close to the wall but such
that the temperature at that point is still above the cutoff tem-
perature. The cutoff temperature, therefore, has only the effect
of preventing cooling in the upstream region.

I also introduce a new, third approach based on the charac-
teristic boundary method (Thompson 1987, 1990), the details
of which are given in the Appendix. Following the same ap-
proach used in x 3.1, the velocity will be held constant at the
steady state value, whereas pressure and density are allowed to
evolve with time. The ‘‘constant-velocity’’ boundary condition
is hereafter referred to as CVBC.

Finally, a fourth recipe (SB95; SBD03; Langer et al. 1982) is
to further extend the domain in the downstream direction by
placing a cold dense layer for xlow < x < x0. Here xlow ¼ �2 is
the new location of the lower boundary, while x0 ¼ 10�4 still
lies inside the postshock region. Flow quantities have constant
profiles, continuous at x ¼ x0, and the temperature of the cold
layer becomes approximately 2% of the temperature immedi-
ately behind the shock. For this boundary condition, the cutoff
temperature was set equal to the temperature of the cold dense
layer. At the back of the layer, x ¼ xlow, an outflow boundary
condition (OBC) holds on density, velocity, and pressure.

The onset of instability is triggered by the discretization error
of the numerical scheme, and no external, ad hoc perturbation is
introduced, unless otherwise stated.

A uniform grid is used in the region x0 � x � 1:4, whereas a
second, geometrically stretched grid covers the rest of the up-
stream region, 1:4 < x � 5. The extent of the uniform region
has been chosen to ensure that the largest amplitude oscillations
would be adequately resolved.

Issues concerning grid resolution effects must not be under-
estimated. In fact, as outlined by SBD03, sharp density gra-
dients can be described with relatively limited accuracy because
of numerical diffusion effects that cause high-density regions
to ‘‘leak’’ mass into neighboring low-density zones. Since the
cooling process is proportional to the square of density, radia-

tive losses will generally be overestimated, causing abnormal,
excessive cooling. Although this issue is intrinsic to any grid
of finite size and cannot be completely removed, higher reso-
lutions can considerably mitigate the problem. Furthermore,
small-amplitude oscillations of the shock front can be ade-
quately captured on finer grids.

For this reason, a grid of 2240 computational zones covers
the extent of the uniform region for all numerical simulations
presented in this paper. With this resolution, the postshock flow
is initially resolved on 1600 points. The number of points for
the stretched grid has virtually no influence on the solution and
is held fixed at 200 in all cases.

4.3. Results

The one-dimensional numerical simulations are carried out
for five different values of �, selected according to the linear
analysis results presented in x 3.

I first consider the case where � ¼ 0, since all modes have
positive (linear) growth rates. Next, � ¼ 0:5 and 0.7 are exam-
ined, since all of the overtones save the fundamental have pos-
itive linear growth rates and are, therefore, unstable. The value
� ¼ 0:8 lies just above the instability limit of the first and
second harmonics; therefore, as one can see from Table 2, only
overtones with n � 3 are expected to be unstable. Finally, I con-
sider the case � ¼ 1, for which all of the first eight modes have
been shown to have negative growth rates and thus are stable.

4.3.1. � ¼ 0:0

The time evolution diagrams for the four boundary condi-
tions presented in x 4.2 are shown in the four panels of Figure 5,
and the corresponding power spectra of the shock oscillations
are shown in Figure 6.

Significant departure from the steady state solution occurs
most rapidly when the RBC is employed. In this case, the

Fig. 5.—Space-time diagrams for � ¼ 0 and the four different boundary
conditions described in the text. Top to bottom: Reflective boundary condition
(RBC), fixed boundary condition (FBC), constant-velocity boundary condi-
tion (CVBC), and open boundary condition (OBC). The spatial coordinate is
represented on the vertical axis, whereas the time evolution of the system is
described by the horizontal axis. Time is expressed in units of Lc/jvinj, where
Lc is the length of the cooling region in steady state (see x 3.1) and vin is the
fluid velocity ahead of the shock. In each panel, the gas flows supersonically
from the top to the bottom. The gray scale shows the density logarithm: lighter
(darker) shades correspond to lower (higher) density regions.

DYNAMICS OF RADIATIVE SHOCK WAVES 379No. 1, 2005



amplitude of the oscillations rapidly increases with time and the
system enters a nonlinear saturated regime around t � 20 after a
short-lived linear phase. The use of the RBC yields oscillation
frequencies that are found to be shifted with respect to the
values obtained from linear analysis. This particular choice of
boundary condition, in fact, forces the velocity to have a node at
the location of the lower boundary, while density and pressure
have an extremum. Since this condition is far from the equi-
librium configuration (eqs. [14]–[16]), strong nonlinear per-
turbations originate in the postshock flow and steepen into
secondary shocks at a high rate. This also contributes to the
higher amplitude oscillations observed in this case. Not sur-
prisingly, the power spectrum of the shock position, Figure 6,
exhibits frequencies that are offset from the ones predicted by
linear analysis. Notice that, since the mass flux through the
lower boundary is zero and cooling is not effective for T < Tc , a
cold layer of gas at T ¼ Tc accumulates at the bottom of the
cooling region (Fig. 5). Inside this layer, density is approxi-
mately constant and equal to �M2, whereas waves propagate at
the local sound speed, cs � 1/M.

In contrast, the CVBC and FBC yield similar results and the
system preserves profiles close to the initial steady state values.

The early phase of evolution (tP 60 70) is characterized by a
linear growth of the perturbation, while, for tk 80, the amplitude
of the oscillations begins to saturate and the instability becomes
nonlinear. During this phase the largest oscillation amplitudes
reach�25% of the initial equilibrium position. The OBC shows
reduced amplitudes with respect to the previous cases. In ad-
dition, the linear phase is longer than the CVBC or FBC, and
the transition to the nonlinear regime occurs only for tk 110.
The power spectra for the early phase of the evolution (0 <

t < 41) are plotted in Figure 6. Both the CVBC and FBC yield
eigenfrequencies that can be definitely identified with the the-
oretical values, with a bigger uncertainty in the fundamental
mode (see Table 3). Results obtained with the OBC are similar
and the fundamental mode differs from the analytical expecta-
tion by less than 4%.
One should bear in mind, however, that the linear growth rate

of the fundamental mode is a factor of�6 smaller than those of
higher harmonics (1 � n � 7; see Table 2) and therefore modes
with n � 1 tend to saturate faster. For this reason, a represen-
tative sample of the linear phase must have a limited length in
the time domain and, consequently, the power spectrum in-
evitably suffers from poor resolution at lower frequencies.

Fig. 6.—Power spectra of the shock position for � ¼ 0:0 derived from the numerical simulations for the four boundary conditions described in the text. Top:
Reflective (left) and constant-velocity boundary conditions (right). Bottom: Fixed (left) and open boundary conditions (right). The vertical axis represents power on a
logarithmic scale, normalized to its maximum value. The horizontal axis shows frequency on a linear scale. The power spectra are obtained by computing the
Fourier transform of the function xsh(t)� xsh(0), where xsh(t) is the shock position at time t. The transform is taken over a sample of length 0 < t < 40:9. The dashed
vertical lines in correspondence of the �n, with 0 � n � 7, mark the oscillation eigenfrequencies derived from linear analysis (see Table 1).
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The situation is different when a longer portion (92P tP 201)
of the shock position during the saturated regime is analyzed (see
Fig. 7). In this case, the predominantmode of instability is the first
overtone, whereas the fundamental mode and the second har-
monic contribute by less than 10% to the oscillatory cycle. Notice

also that when the CVBC and FBC are used, the prevalent fre-
quency of oscillation differs from the linear prediction by�10%,
but it coincides with the first harmonic when the OBC is adopted.

In all cases, a main sequence of harmonics with increasing
frequencies� ( I ),� ( II),� ( III ), etc. may be identified by inspecting

Fig. 7.—Same as Fig. 6, but when a longer portion of the shock position at later evolutionary times (92:1 < t < 201) is Fourier transformed. For the CVBC and
OBC, a main sequence of overtones ( I, II, III, and so forth) with frequencies � ( I ), � ( II ), � ( III ), : : : may be identified from the plots. These modes are almost equally
spaced in frequency and may result from nonlinear mode-mode coupling between the fundamental mode and the first overtone. Secondary harmonics with
oscillation frequencies � ( Ia), � ( IIa), � ( IIb), etc. appear between the main-sequence modes. The explicit values of � are given in Table 4.

TABLE 3

Relative Errors of the Oscillation Frequencies Found from the Numerical Simulations during the Early Linear Phases

� ¼ 0 � ¼ 1/2 � ¼ 0:7

Mode CVBC OBC CVBC OBC CVBC OBC

� ¼ 0:8

CVBC

� ¼ 1

CVBC

n ¼ 0 ................................ 0.482 0.036 0.039 . . . 0.071 . . . 0.087 0.122

n ¼ 1 ................................ 0.010 0.010 0.008 0.008 0.010 0.010 0.010 0.010

n ¼ 2 ................................ 0.042 0.042 0.025 0.025 0.017 0.017 0.012 0.0003

n ¼ 3 ................................ 0.048 0.020 0.026 0.026 0.016 0.016 0.009 0.006

n ¼ 4 ................................ 0.005 0.005 0.031 0.031 0.017 0.017 0.009 0.011

n ¼ 5 ................................ 0.016 0.027 0.012 0.032 0.018 0.018 0.010 0.010

n ¼ 6 ................................ 0.009 0.009 0.004 0.004 0.018 0.018 0.008 . . .
n ¼ 7 ................................ 0.032 0.001 0.035 0.035 0.046 0.013 0.010 0.012

Notes.—The errors are computed as j! (n)
I /� (n) � 1j, where !(n)

I corresponds to the closest frequency peak referred to the theoretical
value. Notice that the finite length of the time window �t over which the Fourier transform is taken introduces an uncertainty �1/�t.
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Figure 7. These overtones have monotonically decreasing power
and do not necessarily coincide with the linear modes but result
from nonlinear interactions. Nonlinearity enters through mode-
mode coupling, as it is suggested by considering the frequency
spacing between them (Table 4). For the CVBC and OBC, in
fact, the spacing appears to be either a multiple of the funda-
mental mode or equal to the first overtone. In the OBC case,
for instance, one has that �(II) � �(I) � �(III) � �(II) � �(IV )�
�(III) � �(I), i.e., the mode spacing is a multiple of the first
overtone. A similar result holds in the CVBC case where, from
Table 4, it can be verified that � (II) � �(I) � 3�(0), �(III)�
�(II) � �(IV) � �(III) � �(I), and so on.

Intermediate, secondary peaks associated with small-power
modes appear between the main-sequence overtones. Some of
these modes have been identified and labeled in Figure 7 with
�( Ia), �( Ib), �( IIa), �( IIb), etc. These secondary overtones may
result from mode-mode coupling between the main-sequence
modes and the fundamental mode. This coupling is most evi-
dent for the CVBC, where one finds that �(0a) � �(0) � �(Ia) �
�(I) � �(II)� �(Ib) � �(0), and similarly for higher harmonics
(see Table 4).

4.3.2. � ¼ 0:5; 0:7

Based on the previous results and considerations, the CVBC,
FBC, and OBC yield results that more accurately reproduce
the predicted linear behavior during the system’s early phase of
evolution. Moreover, results obtained with the FBC and CVBC
exhibit strong similarities; thus, only the CVBC and OBC are
considered in what follows.

The � ¼ 0:5 value is of particular astrophysical relevance,
since it describes optically thin bremsstrahlung, which is the
main source of radiative losses at temperatures of the order of
108–109 K, typical in accretion shocks in magnetic cataclysmic
variables.

When the CVBC is adopted, the system exhibits a linear
phase for tP 150, gradually followed by the transition to the
nonlinear regime. When compared to the � ¼ 0 case, the os-
cillation amplitudes in the saturated regime are reduced by a
factor of approximately 50%. The situation is quite different,

however, when the OBC is considered: Figure 8 shows that the
solution remains close to the initial steady state values and un-
stable oscillations grow at a smaller rate.
A similar behavior has been reported by SB95 (who also

adopted an ‘‘open boundary’’ condition) for small values of the
inflow Mach number (i.e., M ¼ 5). In their simulations, how-
ever, the amplitude of the oscillations was found to increase for
higher Mach numbers, a behavior not observed in the present
work. The present conclusion is supported by several supple-
mentary tests in which both the inflow Mach number and the
density of the cold layer were changed, but a fully nonlinear
growth of the instability was still never observed. In all of the
numerical tests, in fact, the cold gas layer always acts as an
absorber to incoming perturbations, consequently reducing the

TABLE 4

Nonlinear Frequencies Relative to the Later Evolutionary Phases for � = 0, 0.5, 0.7, and 0.8

� ¼ 0 � ¼ 1/2

Mode CVBC OBC CVBC OBC

� ¼ 0:7

CVBC

� ¼ 0:8

CVBC

� (0) ......................................... 0.287 0.287 0.278 0.278 0.326 . . .

� (0a)........................................ 0.575 . . . 0.611 0.611 . . . . . .

� ( I )......................................... 0.805 0.920 0.888 0.888 0.869 0.858

� ( Ia)........................................ 1.092 . . . 1.166 1.222 1.141 . . .

� ( Ib)........................................ 1.379 . . . 1.444 . . . 1.467 . . .

� ( Ic)........................................ . . . . . . . . . . . . 1.738 . . .

� ( II )........................................ 1.667 1.839 1.721 1.499 2.010 1.448

� ( IIa) ....................................... 1.897 . . . . . . 1.777 . . . . . .

� ( IIb)....................................... 2.184 . . . . . . . . . . . . . . .

� ( III )....................................... 2.471 2.759 2.554 2.110 2.879 1.985

� ( IIIa) ...................................... 2.759 . . . . . . 2.388 3.205 . . .
� ( IIIb)...................................... 3.046 . . . . . . 2.721 . . . . . .

� ( IIIc) ...................................... . . . . . . . . . 2.999 . . . . . .

� ( IV )....................................... 3.276 3.678 3.443 3.609 3.748 3.969

� (V ) ....................................... 4.138 4.598 4.331 4.220 . . . . . .

Notes.—Frequencies labeled with � ( I ),� ( II ),� ( III ), and so on identify the main-sequence overtones, whereas the
intermediate secondary modes are enumerated by appending a letter to the main-sequence mode number that precedes
it (i.e., � ( Ia),� ( IIa),� ( IIb), etc.). The error introduced by the Fourier transform is�1/�t, where�t is the time window
over which the transform is taken.

Fig. 8.—Evolutionary space-time diagrams for � ¼ 0:5 and 0.7 with the
OBC and CVBC. Oscillation amplitudes are considerably reduced when �
increases and also when the OBC is adopted. In the worst case (bottom), the
initial perturbation is damped and the system returns to a stationary, stable
configuration.
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amplitude of the reflected waves. Even in the presence of an
external ad hoc perturbation (similar to the one introduced in
SB95), it was found that the use of a cold dense ‘‘layer’’ inhibits
the growth of instability when �k 0:45.

The behavior of the system during the early phases is re-
flected in the power spectra shown in Figure 9, where a positive
identification of the oscillation eigenfrequencies with the linear
ones is clear. The relative errors of the identifiable peaks are less
than 4% for all modes (see Table 3). Notice that the fundamental
mode (expected to be stable from the linear analysis) is also
visible in the spectrum, since the initial numerical perturbation
excites all modes regardless of their stability.

The power spectra taken during the later phases (Fig. 10)
reveal that, for the OBC, the (mildly) unstable behavior is
mostly sustained by the first three overtones, whereas the first
harmonic is the only dominant mode for the CVBC. In both
cases, little contribution is given by the fundamental mode.
Nonlinear effects, however, suggest that the fundamental mode
may still be important through mode-mode coupling. Similarly
to the � ¼ 0 case, in fact, a main sequence of modes can again
be identified (see Fig. 10). For the CVBC, the frequency
spacing between these modes is either a multiple of the fun-
damental or equal to the first overtone, e.g.,� (II) � � (I) � 3�(0)

and �(IV) � � (III) � � (I). Secondary, small-power overtones are

mainly visible for the OBC case. Again, strong evidence for
intermode coupling is supported by the fact that these secondary
overtones may be decomposed into main-sequence modes. In
fact, if one consider the frequencies listed in Table 4, it can
be seen that �(0a) � �(I) � �(0), �(II) � �(Ia) � �(0), �(IIIa)�
�(III) � �(0), and so on.

For � ¼ 0:7, an additional external perturbation has been
introduced to catalyze the onset of instability. The perturbation
is initially given in the velocity profile as

v0(x)¼) v0(x) 1þ � exp � x� 0:5

0:1

� �2
" #( )

; ð31Þ

with � ¼ 0:05. Density and pressure are obtained according to
equations (14) and (15).

The different behaviors of the OBC and CVBC are illustrated
in Figure 8. Results obtained with the OBC show that the initial
perturbation is damped roughly on a timescale t � 150. As for
the � ¼ 0:5 case, the cold dense layer behind the postshock
region tends to quench large-amplitude perturbations. On the
other hand, when the CVBC is adopted, the initial perturbation
does not fade away and the instability grows at a small rate. The
amplitude of the oscillations relative to initial shock position

Fig. 9.—Power spectra for � ¼ 0:5 (top) and 0.7 (bottom) during the early phases of evolution, 0 < t < 42:4 and 0 < t < 43:3, respectively. Results obtained
with the CVBC and OBC are shown on the left and on the right, respectively. The dashed vertical lines correspond to the frequencies derived from linear analysis.
The vertical and horizontal axes have the same meaning as in Fig. 6.
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is now further reduced to P5% of the initial shock position.
Table 3 shows that the eigenfrequencies of the oscillations differ
by less than 8% from the theoretical results.

The power spectra for the early linear phase (Fig. 9) are
similar to the previous cases, although only modes with 0 �
n � 4 (for the CVBC) and 1 � n � 5 (for the OBC) contribute
to the oscillations.

During the nonlinear phase (CVBC only), the first harmonic
gives the largest contribution, while the third overtone accounts
for roughly 10% (Fig. 10). Although little power is present in
the fundamental mode, the frequency spacing between main-
sequence harmonics seems to indicate that mode-mode coupling
may account, one more time, for the secondary, small-power in-
termediate peaks (�( Ia), �( Ib), etc.) shown in Figure 10. Some
of the �-values are, in fact, closely related: � (Ia) � �(II) � �(I),
�(Ic) ��(III)��(Ia), �(IIIa)��(III) � �(0), �(IV) � �(III) � �(I),
and so on.

4.3.3. � ¼ 0:8; 1

The simulations for the last two cases, � ¼ 0:8 and 1, are
carried out using the CVBC only, since no growth of instability
was observed using the OBC. In both cases, the perturbation

given by equation (31) was imposed at t ¼ 0. Results are shown
in Figures 11 and 12.
When � ¼ 0:8, the early phases of the evolution reflect

the expected linear growth, as one can see from Figure 12.
The power spectrum for this phase shows modes of oscillations
that clearly match the theoretical ones. Most of the power is

Fig. 10.—Same as Fig. 9, but for a longer portion of the oscillatory cycle during the late evolutionary phases, 236:8 < t < 350 (for � ¼ 0:5) and 234:8 < t < 350
(for � ¼ 0:7). During this time window, the oscillation amplitudes have fully saturated and a main sequence of modes, similar to those described in Fig. 7, may be
distinguished in the power spectra. The corresponding oscillation frequencies are labeled by � ( I ), � ( II ), � ( III ), and so on. A number of secondary harmonics (� ( Ia),
� ( IIa), � ( IIb), etc.) is present as well. Notice that the fundamental mode �(0), although linearly stable, is still present (with little power) in the spectra. Values of the
different � are listed in Table 4. When � ¼ 0:7 and the OBC is used, the system returns to steady state and a flat spectrum is obtained.

Fig. 11.—Space-time evolutionary diagram for � ¼ 0:8 (top) and 1 (bot-
tom). Only the CVBC has been employed. In order to make the oscillations
more visible, the spatial scale in the plot shows a small area around the shock
position.
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contributed by the first harmonic, followed by the fundamental
and then the remaining overtones.

The complete transition to the nonlinear phase occurs for
tk200, where smaller amplitude, higher frequency oscillations
take over. A power spectrum of the late evolution reveals the
effects of this transition (Fig. 12). Most of the power is con-
centrated in the third harmonic, with only�10% going into the
first overtone and less than�1% into the second harmonic. The
fundamental mode is absent.

The fact that high-frequency oscillations are dominated by the
third harmonic is quite a remarkable result, since this overtone
is the lowest unstable mode only in the narrow range 0:795 <
� < 0:85, while modes with n < 3 are stable as can be seen
from Table 2. This strongly suggests that this particular choice
of boundary condition is particularly consistent with linear
results.

Notice that both the first and second harmonic should be
linearly stable, since �(1)

c ¼ 0:7815 < 0:8 and �(2)
c ¼ 0:795 <

0:8. Their presence in the power spectrum, however, indicates
that a weak nonlinearity may probably be present. Besides, non-
linear interactions are likely to be responsible for the frequency

coupling between the third and fourth main-sequence over-
tones, since �(IV) � 2�(III).

Finally, when � ¼ 1, the initial perturbation is damped and
the system returns to the original equilibrium solution for tk70.
The power spectrum of the early evolutionary phase (Fig. 12)
shows that the shock oscillations are decomposed into frequency
modes that are well approximated by linear results.

5. DISCUSSION

A study of planar radiative shocks with a power-law cooling
function � � �2T� has been conducted. Both linear and non-
linear time-dependent calculations have been presented.

A linear stability analysis has been carried out for several values
of the cooling index� in the range [�2, 2). For a given value of�,
multiple discrete modes of oscillation exist and the real and imag-
inary parts of the first eight eigenfrequencies have been derived.
The overstablemodes are labeled in order of increasing oscillation
frequency so that n ¼ 0 corresponds to the fundamental mode,
n ¼ 1 to the first overtone, n ¼ 2 to the second overtone, and so
forth. The stability criterion of a particular mode is expressed by
the condition � > �(n)

c , where �(n)
c is the critical value of the

Fig. 12.—Power spectra for � ¼ 0:8 (top) and 1 (bottom). The earlier (0 < t < 43:9 for � ¼ 0:8 and 0 < t < 45:4 for � ¼ 1) and later (233:3 < t < 350 for
� ¼ 0:8 and 229:3 < t < 350 for � ¼ 1) simulation phases are shown on the left and on the right, respectively. Only the � ¼ 0:8 case evolves into a (weakly)
nonlinear phase, characterized by very small amplitude oscillations. Notice how the first and second harmonics, although linearly stable, are still present during the
later simulation phases (� ( I ) and � ( II ); top right panel ). The fundamental mode is practically absent. Explicit values of the nonlinear overtones are given in Table 4.
When � ¼ 1, the initial perturbation produces modes that can be clearly identified with the linear ones (bottom left panel ). These modes are absent during the later
phases (bottom right panel ), thus confirming that the shock is stable.
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cooling index for the nth mode. For the fundamental mode, for
example,�(0)

c ¼ 0:388,whereas for the first and second harmonic
�(1)
c ¼ 0:782 and �(2)

c ¼ 0:795, respectively. A general trend to-
ward stability exists for increasing �, so eventually all modes
are stabilized for �k 0:92. This study confirms previous results
(CI82), for which only the first two or three modes have been
reported for some values of the cooling index. It has been shown
that oscillation frequencies are linearly proportional to the mode
number n, a behavior similar to the quantized modes in a pipe.

The perturbative study has been complemented by several
numerical simulations using an Eulerian, high-resolution shock-
capturing scheme. The shock evolution has been followed through
the linear and nonlinear phases for different values of � and
boundary conditions. Among the four boundary conditions under
consideration (x 4.2), a new time-dependent boundary treatment
has been introduced. The new approach is based on the charac-
teristic boundary method for the Euler equations and is particu-
larly consistent with the basic assumptions used in the analytical
work, where the velocity perturbation has a node at the wall.

For the most unstable case considered here (� ¼ 0), all bound-
ary conditions yield similar results, although the reflective wall
boundary condition is not particularly suitable in modeling small
departures from the stationary solution. The remaining three strat-
egies provide modes of oscillations that, in the limit of small
perturbations, are close (within 5% accuracy with the exception
of the fundamental mode) to the analytical values.

The cases � ¼ 0:5, 0.7, 0.8, and 1 have also been considered.
For � ¼ 0:5 and 0.7, the numerical simulations show that
the choice of the lower boundary condition has a more severe
impact on the growth of unstable modes during the saturated
phase. For example, the additional cold dense layer used in
the open boundary condition (x 4.2) tends to inhibit large-
amplitude oscillations and, for �k 0:7, totally prevents the
growth of instability. In contrast, the new boundary approach
yields results that closely reflect the analytical predictions;
unstable behavior was observed for � ¼ 0:5, 0.7, and 0.8, al-
though the saturated amplitude of oscillations considerably de-
creases with increasing �. For � ¼ 0:8, the largest oscillations
during the saturated phase are reduced to �0.5% of the initial
shock position and are thus barely visible at the resolution
adopted (1600 zones for the postshock flow). For � ¼ 1, the
shock is stable and initial perturbations are damped on a char-
acteristic timescale roughly proportional to the e-folding time
of the first overtone. The modes of oscillations found in the
numerical simulations (during the early phase of evolution) can
be positively identified with the ones derived by linear analysis.
The relative error is usually small, P8%. Notice that this error
also accounts for the discrete frequency spacing introduced by
the fast Fourier transform of the shock position.

The transition from the linear to the nonlinear regime has also
been investigated. Power spectra of the shock position during
the late evolutionary phases reveal that the first overtone is the
dominant mode of oscillation when �P0:7, but that the third
harmonic contributes to most of the power at � ¼ 0:8. The con-
tribution of the fundamental mode is only 10% for the most
unstable case (� ¼ 0) and decreases for increasing �.

The new result of this work shows that a main sequence of
overtones characterizes the saturated, nonlinear oscillatory
phases. Additional, secondary modes may also be present, de-
pending on the particular choice of boundary condition. These
modes of oscillation do not always match those predicted by
linear analysis but result from complex nonlinear interactions.
For the first time, evidence has been provided in favor of mode-
mode coupling, particularly between the first harmonic and the

fundamental mode. The result extends also to those cases in
which some of the modes are linearly stable (� ¼ 0:5, 0.7, 0.8),
thus supporting the possibility that linearly stable modes may
actually become nonlinearly unstable.
In summary, a general trend toward stability is found for

�k 0:8, while an unstable behavior is expected for �P 0:4,
regardless of the choice of the lower boundary condition. On
the other hand, numerical models of radiative shocks are more
sensitive to the treatment of the lower boundary condition when
0:4P�P0:8, a range particularly relevant when optically thin
bremsstrahlung is the dominant cooling mechanism. It should
be pointed out that the use of a cold layer of finite thickness
may bemore self-consistent in realistic astrophysical applications.
The existence of the layer is, in fact, automatically induced by a
cutoff temperature in the cooling function and avoids the com-
plication of specifying a boundary condition at the interface be-
tween the postshock flow and the layer (provided that the sharp
density gradients present in this region are adequately captured).
In spite of the oversimplifying assumptions adopted in this

study, these results show a number of interesting consequences
for a variety of astrophysical settings.
Radiative shocks with velocities vsk 130 km s�1 are not

uncommon in jets from young stellar objects, supernova rem-
nants in the radiative phase, magnetospheric accretion in T Tauri
stars, and colliding stellar winds in relatively close binary sys-
tems. For these systems, the shocked interstellar gas reaches
temperatures in the range 105–107 K and cools mainly by line
emission, for which � < �0:5. Under these conditions, radia-
tive shocks are likely to show unstable behavior in all modes and
phenomenological interpretations based on steady state models
become of questionable validity (Innes et al. 1987a, 1987b). Al-
though inclusion of transverse magnetic fields extends the range
of stability (Smith 1989; Tóth & Draine 1993), the global ther-
mal instability of radiative shock waves may still be important in
interpreting a number of distinct observational features, such as
emission-line ratios observed in interstellar radiative shocks
(Hartigan et al. 1994), mixing between hot and cold material in
colliding winds (Stevens et al. 1992; Antokhin et al. 2004), the
filamentary structures observed in supernova remnants (Blondin
et al. 1998; Walder & Folini 1998), and so forth.
Less conclusive assertions can be made for standing shocks

in the accretion columns of polar and intermediate polar sys-
tems. At temperatures of the order of 108–109 K the X-ray emis-
sion is primarily determined by optically thin bremsstrahlung,
although cyclotron and Compton cooling may not be neglected
(Saxton et al. 1998). However, in the simple case where radi-
ative losses are due to bremsstrahlung cooling only, � � 0:5,
the dynamics of the shock may be influenced by the interaction
with the upper photospheric layers of the white dwarf (Cropper
1990). Hence, realistic models of accretion columns may re-
quire a more complex treatment of the lower boundary. For this
reason, inclusion of additional physical processes, such as mag-
netic fields, multidimensional effects, thermal conduction, etc.,
might be crucial for drawing firm conclusions about the sta-
bility of radiative shocks in AM Her–type systems. Some of
these issues will be considered in future extensions of this work.
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APPENDIX

CHARACTERISTIC BOUNDARY CONDITIONS

The hyperbolic nature of the Euler equations requires boundary conditions to be specified according to the way information
propagates in and out of the boundary. The novel approach introduced in x 4.2 is based on the characteristic boundary method
(Thompson 1987, 1990), where ‘‘physical’’ and ‘‘numerical’’ boundary conditions specify how zone boundary values are integrated
in time along with the interior values. Although the subject of boundary conditions is a vast one and falls outside the scope of this
paper, details of implementation are given hereafter.

A physical boundary condition describes information that enters the domain and thus has to be imposed for each characteristic wave
that propagates from the boundary toward the inside. Information directed outside the boundary is entirely determined by the solution
inside the domain and thus does not require a boundary condition. The numerical scheme, however, still depends on the knowledge of
all flow variables at boundary zones, and hence additional numerical boundary conditions must be prescribed in a consistent way.

In the present context, the boundary equations are more conveniently formulated using the quasi-linear form
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where � ¼ 1/�. The system of equations given by equation (A1) holds at the boundary and must evolve in time together with the
interior values. The characteristic speeds of the system given by equation (A1) are given by k� ¼ v � cs, k

0 ¼ v, where cs ¼ (�p/�)1
=2

is the speed of sound.
In the postshock region the flow is initially subsonic everywhere, since �cs < v < 0 for 0 < x < 1. In the limit of small pertur-

bations around the steady state values, it is reasonable to assume that a condition for subsonic outflow will continue to hold at
subsequent times. Hence, the characteristic associated with k+ has positive sign (i.e., it carries information inside the domain),
whereas k0 and k� are directed outward. This means that only one physical boundary condition can be freely specified (e.g., a constant
pressure or velocity) and the remaining two must be compatible with the interior discretization scheme. Choosing a constant outflow
velocity, for example, is consistent with the linear perturbative analysis, where the velocity perturbation is forced to have a node at the
origin.

Integration of the boundary equation (A1) proceeds by splitting the time-dependent solution into a contribution coming from the
steady state value and a time-dependent ‘‘deviation’’:

q(x; t) ¼ q1(x; t)þ q0(x); ðA2Þ

where q2 �; u; pf g. In the CVBC, the velocity perturbation v1 ¼ 0 at all times and the boundary equations prescribe how pressure
and density should evolve with time:

@�1
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; ðA3Þ

@p1
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þ �p
@v1
@x

¼ � � � 1ð Þ �� �0ð Þ � �p1
@v0
@x

; ðA4Þ

where the spatial derivatives are computed using one-sided approximations. Notice that equations (A3) and (A4) are not a lineari-
zation around a stationary solution but are, in principle, valid for arbitrary departures.
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