332 research outputs found

    Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Get PDF
    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα\alpha emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.Comment: 22 pages, 24 figure

    TV-Centric technologies to provide remote areas with two-way satellite broadband access

    Get PDF
    October 1-2, 2007, Rome, Italy TV-Centric Technologies To Provide Remote Areas With Two-Way Satellite Broadband Acces

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure

    HESS J0632+057: hydrodynamics and non-thermal emission

    Get PDF
    HESS J0632+057 is an eccentric gamma-ray Be binary that produces non-thermal radio, Xrays, GeV and very high-energy gamma-rays. The non-thermal emission of HESS J0632+057 is modulated with the orbital period, with a dominant maximum before apastron passage. The nature of the compact object in HESS J0632+057 is not known, although it has been proposed to be a young pulsar as in PSR B1259-63, the only gamma-ray emitting high-mass binary known to host a non-accreting pulsar. In this letter, we present hydrodynamical simulations of HESS J0632+057 in the context of a pulsar and a stellar wind interacting in an eccentric binary, and propose a scenario for the non-thermal phenomenology of the source. In this scenario, the non-thermal activity before and around apastron is linked to the accumulation of non-thermal particles in the vicinity of the binary, and the sudden drop of the emission before apastron is produced by the disruption of the two-wind interaction structure, allowing these particles to escape efficiently. In addition to providing a framework to explain the nonthermal phenomenology of the source, this scenario predicts extended, moving X-ray emitting structures similar to those observed in PSR B1259-6

    Simulations of stellar/pulsar wind interaction along one full orbit

    Full text link
    The winds from a non-accreting pulsar and a massive star in a binary system collide forming a bow-shaped shock structure. The Coriolis force induced by orbital motion deflects the shocked flows, strongly affecting their dynamics. We study the evolution of the shocked stellar and pulsar winds on scales in which the orbital motion is important. Potential sites of non-thermal activity are investigated. Relativistic hydrodynamical simulations in two dimensions, performed with the code PLUTO and using the adaptive mesh refinement technique, are used to model interacting stellar and pulsar winds on scales ~80 times the distance between the stars. The hydrodynamical results suggest the suitable locations of sites for particle acceleration and non-thermal emission. In addition to the shock formed towards the star, the shocked and unshocked components of the pulsar wind flowing away from the star terminate by means of additional strong shocks produced by the orbital motion. Strong instabilities lead to the development of turbulence and an effective two-wind mixing in both the leading and trailing sides of the interaction structure, which starts to merge with itself after one orbit. The adopted moderate pulsar-wind Lorentz factor already provides a good qualitative description of the phenomena involved in high-mass binaries with pulsars, and can capture important physical effects that would not appear in non-relativistic treatments. Simulations show that shocks, instabilities, and mass-loading yield efficient mass, momentum, and energy exchanges between the pulsar and the stellar winds. This renders a rapid increase in the entropy of the shocked structure, which will likely be disrupted on scales beyond the simulated ones. Several sites of particle acceleration and low- and high-energy emission can be identified. Doppler boosting will have significant and complex effects on radiation.Comment: 8 pages, 11 figures, Astronomy and Astrophysics, in press, minor changes after acceptanc

    Velocity asymmetries in YSO jets: Intrinsic and extrinsic mechanisms

    Get PDF
    It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In order to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]Comment: accepted for publication in A&

    Unusual localization of pennella sp. In swordfish (xiphias gladius) hearts

    Get PDF
    The genus Pennella comprises hematophagous parasites of marine aquatic species, including cephalopods, marine mammals, and pelagic fish. Nine species have been officially included in the genus Pennella plus another six species inquirendae. They are most often found in the host’s musculature, without penetrating internal organs. For the present study, 83 hearts from swordfish (Xiphias gladius) caught in the Mediterranean Sea were sampled and immediately fixed in formalin for histopathological analysis. In total, 10 (12.05%) hearts were found to be parasitized by copepods of the genus Pennella. Macroscopically, there was mild-to-severe fibrinous pericarditis with atrial wall thickening and multiple parasitic nodules. Histologically, the parasitic nodules were surrounded by an inflammatory-necrotizing reaction. Parasitic infestation by Pennella spp. is common in pelagic fish and in swordfish, in particular. Here, however, we report atypical cardiac localization. A future area of focus is the evaluation of cardiac Pennella spp. infestation by histopathology and genetic identification of the parasites
    • 

    corecore