52 research outputs found

    Phytochemical Profiling of Soybean (Glycine max (L.) Merr.) Genotypes Using GC-MS Analysis

    Get PDF
    Twenty-four soybean genotypes collected from different regions and origin were evaluated for their quality performance to explore their nutritional and medicinal values. The proximate compositions showed considerable variations among soybean genotypes. The USA genotypes recorded the highest values for protein (43.1 g/100 g), total fat (23.61 g/100 g), phenolic content and flavonoids (1.77 and 2.13 mg/g). Using GC-MS analyses of methanolic extracts, a total of 88 compounds were identified in the genotypes and were classified to: 19 heterocyclic compounds, 13 compounds for ketones and esters, 9 for phenolic compound, 7 compounds for carboxylic acids and sugar moiety, 5 compounds for aldehydes and alcohols, 4 ether compounds, 3 amide, 2 alkanes and one alkene and one fatty acid ester. Indonesian genotypes recorded the highest number of phenolic and the Australian genotype A-1 had the maximum number of esters. Genotypes showed high levels of proximate compositions and pharmaceutical components, offering potential candidates for improving those traits in adapted genotypes through breeding program, as well as serving as a good source of mass production of pharmaceutical and medicinal components either through classical or in vitro production. Furthermore, platform was set for isolating and understanding the characteristics of each compound for it pharmacological properties

    Influence of Storage Temperature and Duration of Tomato Leaf Samples on Proline Content

    Get PDF
    In arid and semi-arid countries such as Jordan, shortage in water sources might affect agricultural development and reduces the effectiveness of economic benefits of most crops planted in such areas. Tomato is an important agricultural crop and faces severe drought stress due to climate changes, therefore, measurement of proline accumulation in plant tissues is used as an indicator for drought stress tolerance. This research was conducted at Jarash University Campus in northern Jordan. A field experiment was carried out to investigate the impact of different storage temperature (+4ÂșC, - 20ÂșC and -80ÂșC) and different storage durations (0, 3, 6 and 11 weeks) on proline content in five different Jordanian tomato landraces. Results indicated that the average free proline content for samples tested directly after leaves collection was 7.1 ”mol/g. Proline content in leaves stored at +4 ÂșC for 3, 6, and 11 weeks was 4.8, 1.8, and 1.1”mol/g, respectively, while for -20ÂșC was 11.8, 7.9, and 9.5 ”mol/g for samples stored for 3, 6, 11 weeks respectively. In contrast the highest values for these parameters were obtained from samples stored at -80ÂșC, the average measured values of free proline content were 9.5, 7.8, and 12.9 ”mol/g at 3, 6, and 11 weeks of storage, respectively. Based on the results obtained by this research, it is recommended to measure proline content directly after leaves collection. However, for large number of samples, keeping the samples at -20ÂșC not longer than six weeks could be a solution. Finally, we highly recommend the development of in-field method for measurement of free proline content

    Structural and Optoelectronic Characterization of Synthesized Undoped CZTS and Cd-doped CZTS Thin Films

    Get PDF
    138-149Copper zinc tin sulfide (CZTS) thin films with different doping ratios of Cadmium (Cd) were successfully fabricated using the sol-gel method by dip-coating technique. The surface morphology, the crystal structure properties as well the optical properties of undoped CZTS thin film and Cd- doped CZTS thin films were investigated using scanning electron microscopy (SEM), x-ray diffraction (XRD), and UV-Vis spectrophotometer. SEM micrographs demonstrated that the size and morphology of the particles improve due to increasing the Cd concentration in CZTS thin films. In addition, the XRD patterns exhibited the crystalline nature for CZTS thin films with kesterite crystal structure and showed improvement in some crystal structure properties such as crystal size and volume of unit cell with the incorporation of Cd into CZTS thin films. Moreover, optical bandgap energy , in addition to several optoelectronic parameters such as refractive index (), extinction coefficient (), dispersion energy, high-frequency dielectric constant, density of state, Plasma frequency, and relaxation time have been estimated. Remarkably, the bandgap energy of CZTS thin films ranges from 1.594 to 1.529 depending on the Cd content; it increases with increases the concentration of Cd into CZTS thin films

    Cold case : the disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970’s Egypt

    Get PDF
    In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    Faba bean genomics: current status and future prospects

    No full text
    Faba bean represents a crucial source of protein for food, especially for Mediterranean countries, and local demand for faba bean grains is increasing. The crop is also gaining increased attention as an elite candidate for conservation agriculture. However, the complexity of the faba genome has made progress in breeding programs and molecular studies relatively slow compared with other legume crops. Recent advances in plant genomics have made it feasible to understand complex genomes such as faba bean. With the increase of faba bean consumption in the Middle East region, there is an urgent need to develop elite faba genotypes suitable for arid and semi arid environments, with high yield potential and acceptable nutritional quality. This article highlights the recent advances in legume and faba genomics and its potential to contribute to the above mentioned goal. Emphasis is given on prospects on faba improvements strategies from the Middle East point of view.Salem S. Alghamdi, Hussein M. Migdadi, Megahed H. Ammar, Jeffrey G. Paull and K.H.M. Siddiqu

    Agronomical and Physiological Responses of Faba Bean Genotypes to Salt Stress

    No full text
    Considering the importance of salinity stress and genotype screening under stress conditions, the current study evaluated faba bean genotypes in response to saline stress and identified those that were tolerant and determined the influential ratio of each yield component on seed yield under both conditions. As a result, 12 faba bean genotypes were tested under 2 levels of salt stress (100 mM and 200 mM) and a control. The study was analyzed with multivariate (descriptive, ANOVA, PCA, biplot, cluster analysis, and indices) analysis techniques to determine the tolerance level of each genotype. Similarly, the cluster analysis results reported that faba bean genotypes were divided into two groups under the control and 100 mM salinity levels; however, the 200 mM salinity level recorded three groups of faba bean genotypes, showing that salinity stress may limit phenotypic variability among faba bean genotypes. The descriptive analysis results showed a wide range of diversity among the studied characteristics under control and salinity stress conditions. The number of seeds/plants recorded a significant association with plant height (cm) (PH), stomatal conductance (SC), days to flowering (DF), the number of pods, and seed weight (g) (SW); however, an insignificant association was recorded with leaf temperature (LT), fresh weight (g) (FW), Na+, K+, and Na/K ratio. The first three principal components (PCs) represent 81.45% of the variance among the studied traits. The most significant characteristics that contributed the most to the diversity were (PH, leaf area, SPAD reading, stomatal conductance, DF, number of pods/plants, number of seeds/pods, SW, K, and total chlorophyll content); however, the significant genotypes (Hassawi-2, Sakha, ILB-4347, Misr-3, FLIP12501FB) were present in PC1 under both conditions. The results predicted that Hassawi-2, ILB-4347, Sakha, Misr-3, and Flip12501FB were the significant (tolerant) genotypes. However, FLIP12504FB represents a sensitive genotype based on its final grain yield. The results of the indices also recorded significant index correlations with grain yield, demonstrating that these indices are effective tools for screening faba bean-tolerant genotypes under salinity stress conditions

    Comparative phytochemical profiling of different soybean (Glycine max (L.) Merr) genotypes using GC–MS

    No full text
    This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC–MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties
    • 

    corecore