149 research outputs found

    TiO 2

    Get PDF

    Supercritical fluid growth of porous carbon nanocages

    Get PDF
    Carbon nanocages, with remarkably large mesoporous volumes, have been synthesized by the deposition of p-xylene over a Co/Mo catalyst in supercritical carbon dioxide. Nanocages with diameters ranging between 10 and 60 nm were synthesized at temperatures between 650 and 750 °C. The surface area and pore volume of the nanocages produced was found to depend on the reaction temperature and pressure employed. In particular, carbon nanocages with a pore volume of up to 5.8 cm3 g-1 and a BET surface area of 1240 m2 g-1 were readily synthesized at a temperature of 650 °C and a pressure of 10.34 MPa. The high pore volume and surface area of the carbon nanocages synthesized makes them ideal materials for use as inert adsorbents and catalytic supports

    Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction

    Get PDF
    The hybrid material composed of Mn3O4 nanoparticles on nitrogendoped graphene was prepared via a solvothermal process and investigated for the first time as a catalyst for oxygen reduction reaction (ORR). Its high ORR activity, excellent durability and tolerance to methanol make this hybrid material a promising candidate for highly efficient ORR in fuel cells and metal-air batteries.Jingjing Duan, Yao Zheng, Sheng Chen, Youhong Tang, Mietek Jaroniec and Shizhang Qia

    Synthesis and applications of porous non-silica metal oxide submicrospheres

    Get PDF
    © 2016 Royal Society of Chemistry. Nowadays the development of submicroscale products of specific size and morphology that feature a high surface area to volume ratio, well-developed and accessible porosity for adsorbates and reactants, and are non-toxic, biocompatible, thermally stable and suitable as synergetic supports for precious metal catalysts is of great importance for many advanced applications. Complex porous non-silica metal oxide submicrospheres constitute an important class of materials that fulfill all these qualities and in addition, they are relatively easy to synthesize. This review presents a comprehensive appraisal of the methods used for the synthesis of a wide range of porous non-silica metal oxide particles of spherical morphology such as porous solid spheres, core-shell and yolk-shell particles as well as single-shell and multi-shell particles. In particular, hydrothermal and low temperature solution precipitation methods, which both include various structure developing strategies such as hard templating, soft templating, hydrolysis, or those taking advantage of Ostwald ripening and the Kirkendall effect, are reviewed. In addition, a critical assessment of the effects of different experimental parameters such as reaction time, reaction temperature, calcination, pH and the type of reactants and solvents on the structure of the final products is presented. Finally, the practical usefulness of complex porous non-silica metal oxide submicrospheres in sensing, catalysis, biomedical, environmental and energy-related applications is presented

    Adsorption Potential Distributions for Silicas and Organosilicas

    No full text
    Adsorption potential distributions (APDs) were calculated from nitrogen adsorption isotherms for macroporous silicas, and for disordered and ordered mesoporous silicas without and with organic groups attached to the surface. It was shown that the APDs for porous silicas and organosilicas differ significantly from those obtained for carbonaceous materials, especially in the range of high adsorption potentials which correspond to low relative pressures. Although the high adsorption potential portions of APDs for porous siliceous materials are less informative than those for carbons, they are still useful for monitoring the changes in the surface properties due to the attachment of various organic groups
    corecore