151 research outputs found

    Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire

    Get PDF
    P. 147-156The aim of this study was to determine the effects of burn severity on soil properties (chemical, biochemical and microbiological) in fire-prone pine ecosystems three years after fire. To achieve these goals, we selected two large wildfires that occurred in summer 2012 within the Iberian Peninsula: the Sierra del Teleno wildfire, which burned 119 km2 dominated by Pinus pinaster forests developed over acidic soils, and the Cortes de Pallás wildfire, which burned 297 km2, part of them dominated by Pinus halepensis ecosystems with calcareous soils. We classified the burned areas into low or high burn severity categories using spectral indices. Three years after the wildfires, we distributed 56 field plots proportionally to the extent of each severity category. In each field plot, we collected samples of mineral soil from a depth of 0–3 cm. We analysed soil chemical (pH, electrical conductivity, organic carbon, total nitrogen, available phosphorus) biochemical (β-glucosidase, urease and acid phosphatase enzymatic activities) and microbiological (microbial biomass carbon) properties in each soil sample. The relationship between burn severity and soil properties was analysed by a Permutational Multivariate Analysis of Variance and Generalized Linear Models. The results showed a significant influence of the original ecosystem and of burn severity on the overall soil status over the medium term after fire. Available P content increased with burn severity in the acidic soils of the P. pinaster ecosystem. However, the three enzymatic activities and microbial biomass carbon decreased with burn severity in both types of pine ecosystems. β-glucosidase, urease and microbial biomass carbon showed common patterns in relation to burn severity in the two different Pinus ecosystems (acidic and calcareous soils), and therefore we suggest that they could be potential indicators of the burn severity legacy on soils over the medium term after fire in fire-prone pine Mediterranean forests. Available P and acid phosphatase could be potential indicators in the P. pinaster ecosystem. This study provides useful knowledge for developing hazard reduction and restoration strategies after large wildfiresS

    Examining the basis of isoniazid tolerance in nonreplicating Mycobacterium tuberculosis using transcriptional profiling

    Get PDF
    Background: Understanding how growth state influences Mycobacterium tuberculosis responses to antibiotic exposure provides a window into drug action during patient chemotherapy. In this article, we describe the transcriptional programs mediated by isoniazid (INH) during the transition from log-phase to nonreplicating bacilli, from INH-sensitive to INH-tolerant bacilli respectively, using the Wayne model. Results: INH treatment did not elicit a transcriptional response from nonreplicating bacteria under microarophilic conditions (NRP2), unlike the induction of a robust and well-characterized INH signature in log-phase bacilli. Conclusion: The differential regulation (between drug-free NRP2 and log-phase bacilli) of genes directly implicated in INH resistance could not account for the abrogation of INH killing in nongrowing bacilli. Thus, factors affecting the requirement for mycolic acids and the redox status of bacilli are likely responsible for the reduction in INH efficacy. We speculate on additional mechanisms revealed by transcriptome analysis that might account for INH tolerance

    The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment

    Get PDF
    Vegetation fires play an important role in global and regional carbon cycles. Due to climate warming and land use shifts, fire patterns are changing and fire impacts increasing in many of the world's regions. Reducing uncertainties in carbon budgeting calculations from fires is therefore fundamental to advance our current understanding and forecasting capabilities. Here we study 20 chamber burns from the FIREX FireLab experiment, which burnt a representative set of North American wildland fuels, to assess the following: (i) differences in carbon emission estimations between the commonly used “consumed biomass” approach and the “burnt carbon” approach; (ii) pyrogenic carbon (PyC) production rates; and (iii) thermal and chemical recalcitrance of the PyC produced, as proxies of its biogeochemical stability. We find that the “consumed biomass” approach leads to overestimation of carbon emissions by 2–27% (most values between 2% and 10%). This accounting error arises largely from not considering PyC production and, even if relatively small, can therefore have important implications for medium‐ and long‐term carbon budgeting. A large fraction (34–100%) of this PyC was contained in the charred fine residue, a postfire material frequently overlooked in fire carbon research. However, the most recalcitrant PyC was in the form of woody charcoal, with estimated half‐lives for most samples exceeding 1,000 years. Combustion efficiency was relatively high in these laboratory burns compared to actual wildland fire conditions, likely leading to lower PyC production rates. We therefore argue that the PyC production values obtained here, and associated overestimation of carbon emissions, should be taken as low‐end estimates for wildland fire conditions

    Pharmacological regulation of neutrophil activity and apoptosis: Contribution to new strategy for modulation of inflammatory processes

    Get PDF
    Novel strategies of antiinflammatory therapy are based upon pharmacological agents capable to enhance the resolution – i.e. the termination of the beneficial inflammation before it may turn into an adverse chronic stage. In contrast to the current therapy, which antagonises the formation of proinflammatory mediators, the “proresolving” therapy promotes natural antiinflammatory processes. It is likely that several drugs and phytochemicals would act in this way, but this point has not been investigated and thus might be totally overlooked. In this paper, effects of curcumin (diferuloylmethane) were analysed, considering the ability of this natural compound to affect resolution of inflammation through modulation of its important inputs – activity and apoptosis of neutrophils. The presented data indicate that, besides its well-known ability to suppress mechanisms engaged at the onset and progression of inflammation, curcumin could support resolution of inflammation through decreased activity and enhanced apoptosis of neutrophils. This substance decreased the formation of oxidants in neutrophils, both under in vitro conditions and after oral administration to arthritic rats. Moreover, curcumin accelerated spontaneous apoptosis of neutrophils, as indicated by increased externalisation of phosphatidylserine, by intercalation of propidium iodide and by enhanced activity of the executioner caspase-3

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis : As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    © 2020 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire-dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above-ground ecology, (d) fire effects on below-ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives

    Fostering effective and sustainable scientific collaboration and knowledge exchange: a workshop-based approach to establish a national ecological observatory network (NEON) domain-specific user group

    Get PDF
    The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges

    An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter

    Get PDF
    Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of a number of soil properties. However, although several soil spectral laboratories have been established worldwide, the distinct characteristics of instruments and operations still hamper further integration and interoperability across mid-infrared (MIR) soil spectral libraries. In this study, we conducted a large-scale ring trial experiment to understand the lab-to-lab variability of multiple MIR instruments. By developing a systematic evaluation of different mathematical treatments with modeling algorithms, including regular preprocessing and spectral standardization, we quantified and evaluated instruments' dissimilarity and how this impacts internal and shared model performance. We found that all instruments delivered good predictions when calibrated internally using the same instruments' characteristics and standard operating procedures by solely relying on regular spectral preprocessing that accounts for light scattering and multiplicative/additive effects, e.g., using standard normal variate (SNV). When performing model transfer from a large public library (the USDA NSSC-KSSL MIR library) to secondary instruments, good performance was also achieved by regular preprocessing (e.g., SNV) if both instruments shared the same manufacturer. However, significant differences between the KSSL MIR library and contrasting ring trial instruments responses were evident and confirmed by a semi-unsupervised spectral clustering. For heavily contrasting setups, spectral standardization was necessary before transferring prediction models. Non-linear model types like Cubist and memory-based learning delivered more precise estimates because they seemed to be less sensitive to spectral variations than global partial least square regression. In summary, the results from this study can assist new laboratories in building spectroscopy capacity utilizing existing MIR spectral libraries and support the recent global efforts to make soil spectroscopy universally accessible with centralized or shared operating procedures

    A Riboswitch-Based Inducible Gene Expression System for Mycobacteria

    Get PDF
    Research on the human pathogen Mycobacterium tuberculosis (Mtb) would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb

    Adventurous Physical Activity Environments: A Mainstream Intervention for Mental Health

    Get PDF
    Adventurous physical activity has traditionally been considered the pastime of a small minority of people with deviant personalities or characteristics that compel them to voluntarily take great risks purely for the sake of thrills and excitement. An unintended consequence of these traditional narratives is the relative absence of adventure activities in mainstream health and well-being discourses and in large-scale governmental health initiatives. However, recent research has demonstrated that even the most extreme adventurous physical activities are linked to enhanced psychological health and well-being outcomes. These benefits go beyond traditional ‘character building’ concepts and emphasize more positive frameworks that rely on the development of effective environmental design. Based on emerging research, this paper demonstrates why adventurous physical activity should be considered a mainstream intervention for positive mental health. Furthermore, the authors argue that understanding how to design environments that effectively encourage appropriate adventure should be considered a serious addition to mainstream health and well-being discourse
    corecore