11 research outputs found

    Detection of exacerbations in asthma based on electronic diary data: results from the 1-year prospective BIOAIR study

    No full text
    BACKGROUND: Objective measures are required that may be used as a proxy for exacerbations in asthma. The aim was to determine the sensitivity and specificity of electronic diary data to detect severe exacerbations (SEs) of asthma. A secondary aim was to identify phenotypic variables associated with a higher risk of exacerbation.METHODS: In the BIOAIR study, 169 patients with asthma (93 severe (SA); 76 mild to moderate (MA)) recorded lung function, symptoms and medication use in electronic diaries for 1 year. Data were analysed using receiver-operator characteristics curves and related to physician-diagnosed exacerbations. Medical history and baseline clinical data were used to assess risk of exacerbation.RESULTS: Of 122 physician-diagnosed exacerbations, 104 occurred in the SA group (1.1 per patient/year), 18 in the MA group (0.2 per patient/year) and 63 were severe using American Thoracic Society/European Respiratory Society criteria. During exacerbations, peak expiratory flow (PEF) and forced expiratory volume in 1 s significantly decreased, whereas day and night symptoms significantly increased. An algorithm combining a 20% decrease in PEF or a 20% increase in day symptoms on 2 consecutive days was able to detect SEs with 65% sensitivity and 95% specificity. The strongest risk factors for SEs were low Asthma Control Questionnaire score, sputum eosinophils ? 3%, body mass index >25 and low quality of life (St George's Respiratory Questionnaire), with ORs between 3.61 and 2.22 (p<0.05).CONCLUSIONS: Regular electronic monitoring of PEF and asthma symptoms provides an acceptable sensitivity and specificity for the detection of SEs and may be suitable for personal internet-based monitoring of asthma control

    Detection of exacerbations in asthma based on electronic diary data: results from the 1-year prospective BIOAIR study

    No full text
    Objective measures are required that may be used as a proxy for exacerbations in asthma. The aim was to determine the sensitivity and specificity of electronic diary data to detect severe exacerbations (SEs) of asthma. A secondary aim was to identify phenotypic variables associated with a higher risk of exacerbation. In the BIOAIR study, 169 patients with asthma (93 severe (SA); 76 mild to moderate (MA)) recorded lung function, symptoms and medication use in electronic diaries for 1 year. Data were analysed using receiver-operator characteristics curves and related to physician-diagnosed exacerbations. Medical history and baseline clinical data were used to assess risk of exacerbation. Of 122 physician-diagnosed exacerbations, 104 occurred in the SA group (1.1 per patient/year), 18 in the MA group (0.2 per patient/year) and 63 were severe using American Thoracic Society/European Respiratory Society criteria. During exacerbations, peak expiratory flow (PEF) and forced expiratory volume in 1 s significantly decreased, whereas day and night symptoms significantly increased. An algorithm combining a 20% decrease in PEF or a 20% increase in day symptoms on 2 consecutive days was able to detect SEs with 65% sensitivity and 95% specificity. The strongest risk factors for SEs were low Asthma Control Questionnaire score, sputum eosinophils ≥ 3%, body mass index >25 and low quality of life (St George's Respiratory Questionnaire), with ORs between 3.61 and 2.22 (p <0.05). Regular electronic monitoring of PEF and asthma symptoms provides an acceptable sensitivity and specificity for the detection of SEs and may be suitable for personal internet-based monitoring of asthma contro

    Lung function fluctuation patterns unveil asthma and COPD phenotypes unrelated to type 2 inflammation

    No full text
    In all chronic airway diseases, the dynamics of airway function are influenced by underlying airway inflammation and bronchial hyperresponsiveness along with limitations in reversibility, due to airway and lung remodeling as well as mucous plugging. The relative contribution of each component translates into specific clinical patterns of symptoms, quality of life, exacerbation risk, and treatment success.; We aimed to evaluate whether subgrouping of patients with obstructive airway diseases according to patterns of lung function fluctuation allows identification of specific phenotypes with distinct clinical characteristics.; We applied the novel method of fluctuation-based clustering (FBC) to the twice-daily FEV; 1; measurements recorded over a one-year period in a mixed group of 134 adults with mild-to-moderate asthma, severe asthma, or COPD from the European BIOAIR cohort.; Independent of clinical diagnosis, FBC divided patients into 4 fluctuation-based clusters with progressively increasing lung functional alterations that corresponded with patterns of increasing clinical severity, risk of exacerbation and lower quality of life. Clusters of patients with airway disease were identified with significantly elevated biomarkers relating to remodeling (osteonectin) and cellular senescence (plasminogen activator inhibitor-1), accompanied by a loss of airway reversibility, pulmonary hyperinflation and loss of diffusion capacity. The 4 clusters generated were stable over time and revealed no differences in markers of type 2 inflammation (blood eosinophils and periostin).; FBC-based phenotyping provides another level of information, complementary to clinical diagnosis, and unrelated to eosinophilic inflammation, that could identify patients who may benefit from specific treatment strategies or closer monitoring

    Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease

    Get PDF
    Rationale: Serum chitinases may be novel biomarkers of airway inflammation and remodeling, but less is known about factors regulating their levels. Objectives: To examine serum chitotriosidase activity and YKL-40 levels in patients with asthma and chronic obstructive pulmonary disease (COPD) and evaluate clinically relevant factors that may affect chitinase levels, including genetic variability, corticosteroid treatment, disease exacerbations, and allergen exposure. Methods: Serum chitotriosidase (CHIT1) activity and YKL-40 (CHI3L1) levels, as well as the CHIT1 rs3831317 and CHI3L1 rs4950928 genotypes, were examined in subsets of patients with mild to moderate asthma (n = 76), severe asthma (n = 93), and COPD (n = 64) taking part in the European multicenter BIOAIR (Longitudinal Assessment of Clinical Course and Biomarkers in Severe Chronic Airway Disease) study. Blood was obtained at baseline, before and after a 2-week oral steroid intervention, up to six times during a 1-year period, and during exacerbations. Baseline chitinase levels were also measured in 72 healthy control subjects. The effect of allergen inhalation on blood and sputum YKL-40 levels was measured in two separate groups of patients with mild atopic asthma; one group underwent repeated low-dose allergen challenge (n = 15), and the other underwent high-dose allergen challenge (n = 16). Measurements and Main Results: Serum chitotriosidase and YKL-40 were significantly elevated in patients with asthma and those with COPD compared with healthy control subjects. Genotype and age strongly affected both YKL-40 and chitotriosidase activity, but associations with disease remained following adjustment for these factors. Correlations were observed with lung function but not with other biomarkers, including exhaled nitric oxide, blood eosinophils, periostin, and IgE. Generally, acute exacerbations, allergen-induced airway obstruction, and corticosteroid treatment did not affect circulating chitinase levels. Conclusions: YKL-40 and chitotriosidase are increased in asthma and more so in COPD. The data in the present study support these substances as being relatively steroid-insensitive, non T-helper cell type 2 type biomarkers distinctly related to chronic inflammatory disease processes

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    No full text
    RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    No full text
    Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    Get PDF
    RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    No full text
    Rationale: Asthma phenotyping requires novel biomarker discovery.Objectives: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs).Methods: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED.Results: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation.Conclusions: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.</p
    corecore