375 research outputs found

    An imaging vector magnetograph for the next solar maximum

    Get PDF
    Researchers describe the conceptual design of a new imaging vector magnetograph currently being constructed at the University of Hawaii. The instrument combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and on-line digital image processing. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (5 by 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectral range (5000 to 7000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically-dominated chromosphere, as well as effective co-alignment with Solar-A's X ray images. Researchers expect to have the instrument in operation at Mees Solar Observatory (Haleakala) in early 1991. They have chosen to use tunable filters as wavelength-selection elements in order to emphasize the spatial relationships between magnetic field elements, and to permit construction of a compact, efficient instrument. This means that spectral information must be obtained from sequences of images, which can cause line profile distortions due to effects of atmospheric seeing

    Amplitude modulation of solar p-modes by surface magnetic fields

    Get PDF
    Context.It is known from Doppler velocity measurements that the amplitudes of solar p-modes are modulated by strong photospheric magnetic field. Aims.The aim of this paper is to investigate amplitude modulation by model surface magnetic fields. Methods.Linearised magnetohydrodynamics equations, in the absence of gravity, are used to derive the inhomogeneous wave equation which is then solved using the Born Approximation. Results.The amount of modulation depends on the plasma beta, the distance from the magnetic region and the wavenumber. It is also found that the direction of observation could also have an effect on the amount of modulation. Finally, the applicability of the findings to the observational data suggests that the modulation depends on the properties of the magnetic field region and measuring it is an un-contaminating probe for the magnetic field

    Cavopulmonary assist for the failing Fontan circulation: impact of ventricular function on mechanical support strategy

    Get PDF
    Mechanical circulatory support--either ventricular assist device (VAD, left-sided systemic support) or cavopulmonary assist device (CPAD, right-sided support)--has been suggested as treatment for Fontan failure. The selection of left- versus right-sided support for failing Fontan has not been previously defined. Computer simulation and mock circulation models of pediatric Fontan patients (15-25 kg) with diastolic, systolic, and combined systolic and diastolic dysfunction were developed. The global circulatory response to assisted Fontan flow using VAD (HeartWare HVAD, Miami Lakes, FL) support, CPAD (Viscous Impeller Pump, Indianapolis, IN) support, and combined VAD and CPAD support was evaluated. Cavopulmonary assist improves failing Fontan circulation during diastolic dysfunction but preserved systolic function. In the presence of systolic dysfunction and elevated ventricular end-diastolic pressure (VEDP), VAD support augments cardiac output and diminishes VEDP, while increased preload with cavopulmonary assist may worsen circulatory status. Fontan circulation can be stabilized to biventricular values with modest cavopulmonary assist during diastolic dysfunction. Systemic VAD support may be preferable to maintain systemic output during systolic dysfunction. Both systemic and cavopulmonary support may provide best outcome during combined systolic and diastolic dysfunction. These findings may be useful to guide clinical cavopulmonary assist strategies in failing Fontan circulations

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    The potential psychological benefits of Active Video Games in the rehabilitation of musculoskeletal injuries and deficiencies: A narrative review of the literature

    Get PDF
    Background: Recent literature suggests that Active Video Games (AVGs) may offer potential psychological benefits during the rehabilitation of musculoskeletal injuries and their corresponding deficiencies. Objectives: To review existing literature regarding the potential psychological benefits of AVGs within the context of rehabilitation from musculoskeletal injury or debilitation. Method: A narrative review of the literature that used the Population, Intervention, Comparison, and Outcomes PICO method was conducted. The literature review included studies that discussed and/or investigated potential psychological benefits of AVGs during musculoskeletal rehabilitation. Of the total 163 papers that were identified, 30 met the inclusion criteria. Results: The Nintendo® WiiTM (Nintendo Co., Ltd, Kyoto, Japan) was the most commonly-used games console that was employed in AVG interventions (15 out of 21), and these studies that investigated potential psychological benefits were typically conducted with elderly populations. These studies reported that using AVGs in musculoskeletal rehabilitation resulted in a number of positive psychological effects (e.g., enjoyment, effects on self). However, most studies lacked a clear theoretical framework, and varied greatly in their designs and methodologies. Conclusion: Despite encouraging findings of AVG use, insufficient evidence exists to reliably verify or refute the potential psychological benefits of AVGs in musculoskeletal rehabilitation. It is recommended that future studies in this area contain a theoretical framework to ensure greater consistency in the methodology used and the execution of the intervention. The potential findings of such investigations may result in the development of optimal, client-tailored rehabilitation programmes

    A high-throughput screen to identify inhibitors of SOD1 transcription

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disease. Approximately 20% of familial ALS cases are caused by mutations in the Cu/Zn superoxide dismutase (SOD1) gene. Rodents expressing mutant SOD1 transgenes develop progressive, fatal motor neuron disease and disease onset and progression is dependent on the level of SOD1. We investigated the possibility that a reduction in SOD1 protein may be of therapeutic benefit in ALS and screened 30,000 compounds for inhibition of SOD1 transcription. The most effective inhibitor identified was N-{4-[4-(4-methylbenzoyl)-1-piperazinyl]phenyl}-2-thiophenecarboxamide (Compound ID 7687685), which in PC12 cells showed an EC50 of 10.6 microM for inhibition of SOD1 expression and an LD50 >30 microM. This compound was subsequently shown to reduce endogenous SOD1 levels in HeLa cells and to exhibit a modest reduction of SOD1 protein levels in mouse spinal cord tissue. These data suggest that the efficacy of compound 7687685 as an inhibitor of SOD1 gene expression is not likely to be clinically useful, although the strategy reported could be applied broadly to screening for small molecule inhibitors of gene expression

    Ongoing β-Cell Turnover in Adult Nonhuman Primates Is Not Adaptively Increased in Streptozotocin-Induced Diabetes

    Get PDF
    OBJECTIVE: \u3b2-Cell turnover and its potential to permit \u3b2-cell regeneration in adult primates are unknown. Our aims were 1) to measure \u3b2-cell turnover in adult nonhuman primates; 2) to establish the relative contribution of \u3b2-cell replication and formation of new \u3b2-cells from other precursors (defined thus as \u3b2-cell neogenesis); and 3) to establish whether there is an adaptive increase in \u3b2-cell formation (attempted regeneration) in streptozotocin (STZ)-induced diabetes in adult nonhuman primates. RESEARCH DESIGN AND METHODS: Adult (aged 7 years) vervet monkeys were administered STZ (45-55 mg/kg, n = 7) or saline (n = 9). Pancreas was obtained from each animal twice, first by open surgical biopsy and then by euthanasia. \u3b2-Cell turnover was evaluated by applying a mathematic model to measured replication and apoptosis rates. RESULTS: \u3b2-Cell turnover is present in adult nonhuman primates (3.3 \ub1 0.9 mg/month), mostly (~80%) derived from \u3b2-cell neogenesis. \u3b2-Cell formation was minimal in STZ-induced diabetes. Despite marked hyperglycemia, \u3b2-cell apoptosis was not increased in monkeys administered STZ. CONCLUSIONS: There is ongoing \u3b2-cell turnover in adult nonhuman primates that cannot be accounted for by \u3b2-cell replication. There is no evidence of \u3b2-cell regeneration in monkeys administered STZ. Hyperglycemia does not induce \u3b2-cell apoptosis in nonhuman primates in vivo
    corecore