937 research outputs found

    Computing singularities of perturbation series

    Full text link
    Many properties of current \emph{ab initio} approaches to the quantum many-body problem, both perturbational or otherwise, are related to the singularity structure of Rayleigh--Schr\"odinger perturbation theory. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the perturbed Hamiltonian on a vector, and does not rely on the terms in the perturbation series. Some illustrative model problems are studied, including a Helium-like model with δ\delta-function interactions for which M{\o}ller--Plesset perturbation theory is considered and the radius of convergence found.Comment: 11 figures, submitte

    Humoral Response Induced by Prime-Boost Vaccination with the ChAdOx1 nCoV-19 and mRNA BNT162b2 Vaccines in a Teriflunomide-Treated Multiple Sclerosis Patient.

    Get PDF
    Patients with multiple sclerosis (MS) are treated with drugs that may impact immune responses to SARS-CoV-2 vaccination. Evaluation of "prime-boost" (heterologous) vaccination regimens including a first administration of a viral vector-based vaccine and a second one of an mRNA-based vaccine in such patients has not yet been completed. Here, we present the anti-spike protein S humoral response, including the neutralizing antibody response, in a 54-year-old MS patient who had been treated with teriflunomide for the past 2 years and who received a heterologous ChAdOx1 nCoV-19/ BNT162b2 vaccination regimen. The results showed a very strong anti-S IgG response and a good neutralizing antibody response. These results show that teriflunomide did not prevent the development of a satisfactory humoral response in this MS patient after vaccination with a ChAdOx1 nCoV-19/ BNT162b2 prime-boost protocol

    Impact of a Community Pharmacist-Delivered Information Program on the Follow-up of Type-2 Diabetic Patients: A Cluster Randomized Controlled Study.

    Get PDF
    Low-quality communication between patients and care providers and limited patient knowledge of the disease and the therapy are important factors associated with poor glycemic control in patients with type 2 diabetes. We conducted a multicenter study to determine whether structured and tailored information delivered by pharmacists to type 2 diabetic patients could improve patient treatment adherence, hemoglobin A1c (HbA1c) levels and knowledge about diabetes. One hundred seventy-four pharmacies were randomized to deliver an educational program on diet, drug treatment, disease and complications during three 30-min interviews over a 6-month period, or to provide no intervention, to type 2 diabetic patients treated with oral antidiabetic agents. Medication adherence was assessed by measuring the medication possession ratio and diabetes control by collecting HbA1c values. Levels of patient treatment self-management and disease knowledge were assessed using self-questionnaires. Three hundred seventy-seven patients were analyzed. The medication possession ratio, already very high at baseline in the intervention (94.8%) and control (92.3%) groups, did not vary significantly after 6 months with no difference between the two groups. Significant decreases in HbA1c were observed in both groups at 6 months (p < 0.001) and 12 months (p < 0.01), with significantly greater changes from baseline in the intervention group than in the control group at 6 months (- 0.5% vs. - 0.2%, p = 0.0047) and 12 months (- 0.6% vs. - 0.2%, p = 0.0057). Patients in the intervention group showed greater improvement in their ability to self-manage treatment (+ 4.86 vs. + 1.58, p = 0.0014) and in the extent of their knowledge about diabetes (+ 0.6 vs. + 0.2, p < 0.01) at 6 months versus baseline compared with the control group. Tailored information provided by the pharmacist to patients with type 2 diabetes did not significantly improve the already high adherence rates, but was associated with a significant decrease in HbA1c and an improvement of patient knowledge about diabetes. ISRCTN33776525. MSD France

    The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures

    Get PDF
    Motivation: Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. Methods: We compare 32 feature selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. Results: We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Simple filter methods generally outperform more complex embedded or wrapper methods, and ensemble feature selection has generally no positive effect. Overall a simple Student's t-test seems to provide the best results. Availability: Code and data are publicly available at http://cbio.ensmp.fr/~ahaury/

    Synchronization of delay-coupled nonlinear oscillators : an approach based on the stability analysis of synchronized equilibria

    Get PDF
    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties. In the examples several network topologies are considered. © 2009 American Institute of Physics

    Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment

    Get PDF
    Gene-expression signature-based disease classification and clinical outcome prediction has not been widely introduced in clinical medicine as initially expected, mainly due to the lack of extensive validation needed for its clinical deployment. Obstacles include variable measurement in microarray assay, inconsistent assay platform, analytical requirement for comparable pair of training and test datasets, etc. Furthermore, as medical device helping clinical decision making, the prediction needs to be made for each single patient with a measure of its reliability. To address these issues, there is a need for flexible prediction method less sensitive to difference in experimental and analytical conditions, applicable to each single patient, and providing measure of prediction confidence. The nearest template prediction (NTP) method provides a convenient way to make class prediction with assessment of prediction confidence computed in each single patient's gene-expression data using only a list of signature genes and a test dataset. We demonstrate that the method can be flexibly applied to cross-platform, cross-species, and multiclass predictions without any optimization of analysis parameters

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
    corecore