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We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators
with delays in the interconnections. The network topology is described by a directed graph. Unlike
the conventional approach of deriving directly sufficient synchronization conditions, the approach
of the paper starts from an exact stability analysis in a �gain, delay� parameter space of a synchro-
nized equilibrium and extracts insights from an analysis of its bifurcations and from the correspond-
ing emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is
employed that not only facilitates the analysis and reduces computational cost but also allows to
determine the precise role of the individual agents and the topology of the network in the �in�sta-
bility mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis
of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it
explains under which conditions on the topology of the network and on the characteristics of the
coupling the systems are expected to synchronize. In the second part of the paper the results are
applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains,
delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of
systems and the topology of the network, as long as some basic assumptions are satisfied, including
the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a
nonlinear stability analysis which confirms the predictions based on the linearized stability and
bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation
where a direct nonlinear stability analysis is not possible or where it yields conservative conditions
from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling
properties. In the examples several network topologies are considered. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3187792�

Synchronization is an important problem in the study of
coupled dynamical systems, motivated by applications in
science and engineering. This article considers the syn-
chronization problem in networks of identical nonlinear
oscillators, where the signal exchanges are affected by
time delays. The main interest lies in gaining insight in
the occurrence of synchronized behavior and in studying
its dependence on parameters of the coupling (coupling
strength, delay) and on the topology of the network. Be-
cause synchronization is a notion of relative stability, the
existing methods for the stability analysis of nonlinear
time-delay systems can be directly applied or adapted to
the synchronization problem, possibly combined with a
boundedness argument of the solutions. Such methods
are almost exclusively time-domain based and heavily
rely on an appropriately chosen Lyapunov function(al).
Although they are applicable to the study of complex syn-
chronized behavior (e.g., synchronized chaotic behavior),
the resulting conditions for synchronization are typically

in the form of sufficient, yet not necessary conditions,
from which it may be hard to extract qualitative insights
in the synchronization mechanisms. Inspired by this ob-
servation a distinct approach is taken in this paper which
builds on the stability and bifurcation analysis of a spe-
cial type of synchronized solutions, for which necessary
and sufficient stability conditions can be obtained,
namely, synchronized equilibria.

NOMENCLATURE

C , R � Set of complex numbers,
set of real numbers

N � Set of natural numbers, in-
cludes zero

j � Imaginary identity
�1�G� ,E1 ,�2�G� ,E2. . . � Eigenvalues and corre-

sponding eigenvectors of
matrix G

R��� , I��� , ��� , ��C � Real part, imaginary part,
and modulus of �
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�� , ��C � Argument of �, following
the convention ��
� �0,2��

r��A� � Spectral radius of matrix A
��A� � Spectrum of matrix A

�1�A���2�A��¯ � Singular values of matrix A
�a� , a= �a1 , . . . ,am��Cm � Euclidean norm of a, �a�

=��k=1
m ak

2

Ē , �E , E�C � Closure of E, boundary of
E

A � B � Kronecker product of ma-
trices A and B �see, e.g.,
Ref. 7�

A � B , A�Cn�n , B�Cm�m � Kronecker sum of A and B,
A � B= �A � Im�+ �In � B�.

I. INTRODUCTION

We consider p identical nonlinear oscillators described
by

ẋi�t� = f�xi� + Bui�t�, yi�t� = Cxi�t�, i = 1, . . . ,p , �1�

where xi�Rn, i=1, . . . , p, B ,C�Rn�1, and f :Rn�Rn is
twice continuously differentiable. We further assume that for
ui=0 the system �1� has at least one unstable equilibrium of
focus type, which we denote by x� in what follows.

In order to describe the coupling between the oscillators
we define a directed graph

G�V,G� , �2�

characterized by the node set V= 	1, . . . , p
 and a weighted
adjacency matrix G with zero diagonal entries and nondiago-
nal entries equal to �i,l�0. The corresponding edge set E
satisfies �i , l��E if and only if �i,l�0, Next, we couple the
systems �1� by means of the “control” law

ui�t� = k� �
�i,l��E

�i,l�yl�t − �� − yi�t���, i = 1, . . . ,p , �3�

where k	0 represents the gain parameter and � the transmis-
sion delay. We assume the transmission delay to be fixed and
independent of the nodes. It is important to point out that we
do not assume that G is symmetric.

The aim of the paper is to study the effect of the cou-
pling �3�, with k and � as parameters, on the synchronization
of the systems �1� and to reveal synchronization mechanisms
and conditions. Hereto a complete characterization of the
stability-instability regions of the synchronized equilibrium
�x� , . . . ,x�� of Eqs. �1� and �3� in the �k ,�� parameter space
will be made. Note that achieving stability can be seen as an
extension of the use of Pyragas-type feedback16 to stabilize
an unstable equilibrium as in Ref. 8 though, in contrast to the
original idea of the Pyragas feedback, the time delay � is not
linked to any possible periodicity in the system. It can also
be interpreted as a situation where so-called oscillator death
is achieved.1 The proposed approach to compute stability
regions in the �k ,�� parameter space is inspired by Chap. 4 of
Ref. 12 where an overview of methods to compute stability
regions in parameter spaces of linear control systems with
delays is presented, yet not in the context of networks of

interconnected systems. Beyond the stability analysis of
�synchronized� equilibria, the goal is to gain insights in and
reveal explanations for the occurrence of more complex syn-
chronized behavior.

A motivation and overview of synchronization problems
and results can be found in Refs. 18 and 20. An overview of
the available results on synchronization problems with cou-
pling delays is presented in Sec. II of Ref. 14. As it is appar-
ent from this overview some of the existing results assume a
coupling similar to Eq. �3� but where also the output yi�t� is
delayed over an interval of length �. A control law of the
form �3� is employed in Refs. 10, 14, and 21. The motivation
for this form is that each agent has immediate access to its
own state, while the information about the state of the other
agents needs to be communicated over the network, which
may lead to delays. In Ref. 10 the anticipative synchroniza-
tion problem of two systems is considered. In Ref. 21 a sym-
metric network of four systems is analyzed. In Ref. 14 the
synchronization problem in general networks with delays is
considered Necessary conditions on the network topology
and delays for the existence of synchronized solutions are
presented, and sufficient conditions for asymptotic synchro-
nization are stated. However, unlike this paper, no qualitative
analysis is performed and a different methodology is taken,
relying on time-domain methods and, in particular, Lyapunov
functionals. Synchronization in general networks is also ad-
dressed in Refs. 2 and 15 and the references therein but
without taking into account delay effects. The latter effects
are, however, crucial in this paper. Finally, in Ref. 3 a com-
plete bifurcation analysis of a model for three interacting
neurons with delay in the interconnections is presented under
the assumption of a ring configuration and bidirectional
coupling.

The structure of the paper is as follows. In Sec. II some
preliminary results are presented, which include necessary
conditions for the occurrence of synchronized solutions of
Eqs. �1� and �3�. In Sec. III a linearized stability analysis of
synchronized equilibria is performed. In Sec. IV the results
are applied to networks of coupled Lorenz systems and
complemented with a nonlinear stability analysis. Particular
attention will be paid to the asymptotic behavior of stability
properties for large values of the gain parameter and on the
derivation of generic results that do not depend on the net-
work topology and the number of oscillators. The conclu-
sions are formulated in Sec. V.

II. PRELIMINARIES

A. Assumptions on the graph

The following assumptions are made throughout the
paper.

Assumption 2.1: The graph G is strongly connected.
Assumption 2.2: The adjacency matrix G satisfies

�
l=1

p

�i,l = 1, i = 1, . . . ,p .
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The first assumption is natural in the context of synchro-
nization with delayed coupling; the second assumption will
be motivated in Sec. II B. The following results are direct
corollaries.

Corollary 2.3: G has a simple eigenvalue equal to 1 and
�1¯1�T is the corresponding eigenvector. Furthermore,
there exits a vector 
= �
1¯
p�T such that


l 	 0, 1 � l � p, �
l=1

p


l = 1, 
T�G − I� = 0.

Proof: The matrix G− I is a Metzler matrix with zero
row sums by Assumption 2.2, and it is irreducible by As-
sumption 2.1. The assertion follows. �

Corollary 2.4: All eigenvalues of G have modulus
smaller than or equal to 1.

Proof: For all x�Cp we have �Gx��� �x�2, as the pre-
multiplication of G implies that every element is replaced
with a weighted average of the other elements. This implies
that �G���1 and the assertion follows. �

In what follows we denote the eigenvalues of G as
�i�G�, 1� i� p, where we take the following convention.

Convention 2.5: �1�G�=1.

B. A coordinate transformation

Define the matrix G̃:

G̃ = 

0 �2,3 �2,4 ¯ �2,p

�3,2 0 �3,4 �3,p

�

�p,2 �p,3 ¯ �p,p−1 0
�

− 

1

1

]

1
���1,2 �1,3 ¯ �1,p � , �4�

which satisfies the following property.

Property 2.6: ��G̃�=��G� \ 	1
.
Proof: By Assumption 2.2 and Corollary 2.3 the matrix

Ḡ ª G − 
1

]

1
��0 �1,2 ¯ �1,n �

satisfies

��Ḡ� = 	0,�2�G�, . . . ,�p�G�
 .

Furthermore, we have by construction

Ḡ = 

0 0 ¯ 0

�2,1

] G̃

�p,1

� .

It follows that ��G̃�= 	�2�G� , . . . ,�p�G�
. �

By means of the new variables

e2�t� = x2�t� − x1�t� ,

] ,

ep�t� = xp�t� − x1�t� ,

we can bring Eqs. �1� and �3� in the form

ẋ1�t� = f�x1�t�� + kBC��
l

�1,l��x1�t − �� − x1�t��

+ kBC�
l

�1,lel�t − �� ,


ė2�t�
]

ėp�t�
� = 
 f�x1 + e2� − f�x1�

]

f�x1 + ep� − f�x1�
�

− k�
�
l

�2,l

�

�
l

�p,l
� � BC�
e2�t�

]

ep�t�
�

+ kG̃ � BCT
e2�t − ��
]

ep�t − ��
�

+�k

�

l

�1,l − �
l

�2,l

�
l

�1,l − �
l

�3,l

]

�
l

�1,l − �
l

�p,l
� � BC��x1�t� − x1�t − ���.

�5�

From this equation it can be seen that a synchronized solu-
tion, characterized by

e2 � 0, . . . ,ep � 0,

can only exist in three cases:

�1� the delay is equal to zero,
�2� the overall motion is �-periodic, and
�3� Assumption 2.2 holds.

Because we are primarily interested in explaining syn-
chronized complex behavior in the presence of delays in the
coupling, we can take Assumption 2.2 without losing gener-
ality and the equations in Eq. �5� simplify to

ẋ1 = f�x1�t�� + kBC�x1�t − �� − x1�t�� + kBC�
l=1

p

�1,lel�t − �� ,

�6�
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ė2

]

ėp
� = 
 f�x1 + e2� − f�x1� − kBCe2

]

f�x1 + ep� − f�x1� − kBCep
� + kG̃ � BC
e2�t − ��

]

ep�t − ��
� .

�7�

The solutions on the synchronization manifold are character-
ized by

ẋ1�t� = f�x1�t�� + kBC�x1�t − �� − x1�t�� . �8�

If all the solutions of Eqs. �6� and �7� converge to a bounded
forward invariant set, then the synchronization between the
agents is achieved locally if the linearization of Eq. �7�,


ė2�t�
]

ėp�t�
� = 
�

� f

�x
�x1�t�� − kBC�e2�t�

]

� � f

�x
�x1�t�� − kBC�ep�t� �

+ kG̃ � BC
e2�t − ��
]

ep�t − ��
� , �9�

is uniformly asymptotically stable. In order to simplify the
analysis, we let R and I be defined as

R = 	i � 	2, . . . ,p
:I��i�G�� = 0
 ,

I = 	i � 	2, . . . ,p
:I��i�G�� 	 0


and we let Tr be a matrix satisfying

Tr
−1G̃Tr = D ,

where D is a block triangular matrix whose diagonal blocks
are given by

	�i�G�:i � R
 � �� R��i�G�� I��i�G��
− I��i�G�� �R��i�G��� �:i � I� .

The matrices Tr and D always exist by the identity

��D�=��G̃� and Property 2.6.
From the state transformation induced by the matrix

�Tr � I� it follows that its zero solution of Eq. �9� is uni-
formly asymptotically stable if the following equations are
uniformly asymptotically stable:


̇i�t� = � � f

�x
�x1�t�� − kBC�
i�t� + k�i�G�BC
i�t − ��,

∀ i � I , �10�

� 
̇i

�̇i
� = I � � � f

�x
�x1�t�� − kBC�� 
i

�i
�

+ k� R��i�G�� I��i�G��
− I��i�G�� �R��iG�� �

� BC� 
i�t − ��
�i�t − �� �, ∀ i � J . �11�

Equivalently, a full triangularization of G̃ results in the
analysis of


̇i�t� = � � f

�x
�x1�t�� − kBC�
i�t� + k�i�G�BC
i�t − ��,

∀ i = 2, . . . ,p , �12�

at the price that some of the equations in Eq. �12� are com-

plex valued if G̃ has complex eigenvalues.
Remark 2.7: The analysis of networks using the master

stability function4,15 is based on a similar decomposition of
the error dynamics. For �=0, this function maps z
�C , R�z��0 to the largest Lyapunov exponent of


̇i =
� f

�x
�x1�t��
i�t� + zBC
i�t� . �13�

Equation (13) is related to Eq. (12) with �=0 via

z = k�i�G − I� .

Unlike the undelayed case considered in the literature, the
dynamics on the synchronization manifold, governed by Eq.
(8), depend on both k and �, since the coupling is invasive if
��0. Furthermore, in the presence of delay both parameters
k and �i�G� can no longer be simultaneously absorbed in the
variable z.

III. STABILITY ANALYSIS OF SYNCHRONIZED
EQUILIBRIA

When we linearize the system �1� and �3� around the
synchronized equilibrium �x� , . . . ,x��, we obtain


�̇1�t�
]

�̇p�t�
� = I � �A − kBC�
�1�t�

]

�p�t�
� + kG � BC
�1�t − ��

]

�p�t − ��
� ,

�14�

where

A =
� f

�x
�x�� .

A. The characteristic equation

1. Factorization
The characteristic function of Eq. �14� is given by

f��;k,�� ª det F��;k,�� ,

where the characteristic matrix F is defined as

F��;k,�� = I � ��I − A + kBC� − G � kBCe−��. �15�

If we factorize G=T�Tc
−1, where ��Cp�p is triangular and

Tc�Cp�p, the characteristic function becomes
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f��;k,�� = det�I � ��I − A + kBCc� − Tc�Tc
−1

� kBCce
−���

= det�Tc
−1

� I�det�I � ��I − A + kBC� − Tc�Tc
−1

� kBCe−���det�Tc � I�

= det�I � ��I − A + kBC − kBC�i�G�e−����

= �i=1
p f i��;k,�� , �16�

where

f i��;k,�� ª det Fi��;k,�� ,

Fi��;k,�� ª �I − A + kBC − kBC�i�G�e−��, i = 1, . . . ,p .

Remark 3.1: This factorization of the characteristic func-
tion can also be obtained from the factorization of Eqs. (6)
and (7) into Eqs. (6) and (12) when taking into account that
x1�t��x�. It follows from this observation that the zeros of

f1��;k,�� = det��I − A + kBC − kBCe−���

describe the dynamics of the linearization of the “nominal”
system Eq. (8), while the zeros of

f2��;k,��, . . . , fp��;k,��

describe the behavior of the synchronization error dynamics.

2. Eigenspaces and behavior on the onset
of instability

We investigate the eigenspace of the characteristic ma-
trix �15�, corresponding to a characteristic root. For reasons
of simplicity we restrict ourselves to the generic case where
all the eigenvalues of the adjacency matrix G are simple. Let
Ei be the eigenvector of G corresponding to the eigenvalue
�i�G�, i=1, . . . , p. By Corollary 2.3, we have
E1= �1 1¯1�T.

If for some l� 	1, . . . , p
, the equation

f l��;k,�� = 0

has a simple root at �= �̂ such that

Fl��̂;k,��V = 0, V � Cm�1, �17�

then it can be verified that

F��̂;k,���El � V� = 0. �18�

This implies that the linearized system �14� has an exponen-
tial solution


�1�t�
]

�p�t�
� = c�El � V�e�̂t = c
el,1V

]

el,pV
�e�̂t, �19�

with the constant c depending on the initial conditions.
The above analysis can be generalized to the case where

the zero �̂ of f l has multiplicity larger than 1—for the theory
of multiple eigenvalues of nonlinear eigenvalue problems we
refer to Ref. 9 If the vectors �Vr , . . . ,V1� form a Jordan chain

of length r of Fl corresponding to the eigenvalue �̂, that is,

V1 � 0,

Fl��̂�V1 = 0,

Fl��̂�V2 +
1

1!

dFl

d�
��̂�V1 = 0,

] ,

Fl��̂�V3 +
1

1!

dFl

d�
��̂�V2 +

1

2!

d2Fl

d�2 ��̂�V1 = 0,

Fl��̂�Vr +
1

1!

dFl

d�
��̂�Vr−1 +

1

2!

d2Fl

d�2 ��̂�Vr−2 + ¯

+
1

�r − 1�!
dr−1Fl

d�r−1 ��̂�V1, = 0,

then the vectors

�El � Vr, . . . ,El � V1�

form a Jordan chain of F. Moreover, the corresponding so-
lution of Eq. �14� takes the form


�1�t�
]

�p�t�
� = �

i=1

r

ci��
k=1

i
ti−k

�i − k�!
�El � Vk��e�̂t, �20�

where the constants �c1 , . . . ,cr� depend on the initial condi-
tion. The following can be concluded:

• In an exponential solution of Eq. �14� corresponding to a
zero of f l�� ;k ,��, the relation between the state variables
of an individual subsystem is determined by the Jordan
system of Fl, while the relation between the corresponding
state variables of the different subsystems is solely deter-
mined by the eigenvector El, corresponding to the lth ei-
genvalue of the adjacency matrix G. This implies that all
modes can be classified in at most p types based on the
relations between the behavior of the different subsystems.
The bifurcations of the synchronized equilibria of the
original nonlinear system can be classified in the same
way.

• The modes induced by the zeros of f1�� ;k ,�� all corre-
spond to synchronized behavior of the different sub-
systems because E1= �1¯1�T. This is expected because
they describe the dynamics on the synchronization mani-
fold. By Corollary 2.3, the occurrence of these modes is
independent of the topology of the network. The modes
induced by E2 , . . . ,Ep correspond to the synchronization
error dynamics.

B. Computation of stability regions in the delay
parameter

For a fixed value of k the following propositions allow to
characterize delay values corresponding to characteristic
roots of Eq. �14� on the imaginary axis.

Proposition 3.2: For every i� 	1, . . . , p
 we have

fi�0;k,0� = 0 ⇔ f i�0;k,�� = 0, ∀ � � 0. �21�

Proof: The relation (21) is implied by the identity
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f i�0;k ,��= f i�0;k ,0�. �

Proposition 3.3: The following assertions hold:

�1� The equation

fi��;k,�� = 0, i � 	1, . . . ,p
 , �22�

has a root j�, �	0, for some value of ��0 if and only
if there exists a complex number z such that

�z� = 1, j� � ��A − kBC + kBC��i�G��z� . �23�

�2� The corresponding delay values are given by

T� ª � 	T�
z :z satisfies Eq. �23�
 , �24�

with

T�
z
ª ����i�G�z̄� + 2��

�
:� � N� . �25�

�3� If j� is a simple root of Eq. (22) for the delay value �
=�0 and �0�T�

z , then by sweeping the delay through �0

the root crosses the imaginary axis toward instability
(stability) if

R�u�BCvj�z

u�v
� � 0�	0� , �26�

where u and v are left and right null vectors of

j�I − A + kBC − kBC��i�G��z .

Proof: This proposition is an adaptation of Proposition
4.5 of Ref. 12. �

Proposition 3.4: The conditions (23) imply

�z� = 1,

det�� 0 − I

I � k��i�G���BC�T �A − kBC� � �A − kBC�T�
+ z� I 0

0 k��i�G���BC� � I
�� = 0. �27�

Proof: Similar to the proof of Proposition 4.5 of Ref. 12.
�

By combining the above results with a continuation ar-
gument we obtain the following algorithm for computing
stability/instability regions of Eq. �14� in the delay parameter
space:

Algorithm 3.5: [Stability regions of Eq. (14) in the delay
parameter space]

(1) Repeat for i=1, . . . , p:
Compute the zeros of the polynomial f i�� ;k ,0� in the
closed right half-plane. Free the delay parameter. Com-
pute all delay values for which fi�� ;k ,�� has a zero on
the positive imaginary axis and the corresponding cross-
ing direction from Propositions 3.3 and 3.4, in the fol-
lowing way:

(a) Compute all solutions of the eigenvalue problem
(27).

(b) For every z satisfying Eq. (27), compute the eigen-
values on the positive imaginary axis of the matrix

A − kBC + kBC��i�G��z .

(c) Use the results of steps (a) and (b) to determine all
pairs �� ,z� satisfying Eq. (23).

(d) Determine all critical delay values as well as the
corresponding crossing direction of the corre-
sponding zeros of f i on the imaginary axis using
Eqs. (24)–(26) (in the generic case of simple
zeros).

(2) Combine the obtained results for all i� 	1, . . . , p
. This
yields a full characterization of the stability regions of
Eq. (14) in the delay parameter, because all critical de-
lay values and stability switches are covered.

Remark 3.6: Step 1(a) is facilitated by the following sym-
metry property of the generalized eigenvalue problem: a
number z�C \ 	0
 satisfies the second condition of Eq. (27) if
and only if z̄−1 satisfies this condition.

Remark 3.7: The argument ��i�G� does not affect the
solutions of Eqs. (23) and (26). From Eq. (24) a change in
the argument only leads to a shift in the critical delay values.
This property will be apparent in the examples presented in
Sec. IV.

As an alternative to Algorithm 3.5 the curves separating
stability-instability regions in the �k ,�� parameter space can
be computed as Hopf bifurcation curves by numerical con-
tinuation �see, e.g., Ref. 11�. At the one hand, the advantage
of numerical continuation is that curves in the two-parameter
space �k ,�� are directly computed in a computationally effi-
cient way �whereas Algorithm 3.5 only sweeps the delay
parameter for a fixed value of the gain parameter and needs
to be repeated for a set of gain values chosen on a grid�. On
the other hand, isolated curves may not be automatically de-
tected since starting values are required in a continuation
procedure. The latter problem does not occur with Algorithm
3.5 as it is based on a complete description of critical delay
values.

The computations for the numerical examples presented
Sec. IV B are based on numerical continuation using the
package DDE-BIFTOOL,6 where Algorithm 3.5 is used to gen-
erate starting values for the curves. The asymptotic analysis
of coupled Lorenz systems presented in Sec. IV A is based
on Propositions 3.2–3.4, on which Algorithm 3.5 relies.

IV. APPLICATION TO COUPLED LORENZ
SYSTEMS

In this section the nonlinear oscillators �1� are specified
as Lorenz systems:

ẋi,1�t� = ��xi,2�t� − xi,1�t�� ,

ẋi,2�t� = rxi,1�t� − xi,2�t� − xi,1�t�xi,3�t� + ui,1�t�

ẋi,3�t� = − bxi,3�t� + xi,1�t�xi,2�t� + ui,2�t� , �28�

yi,1�t� = xi,2�t� ,
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yi,2�t� = xi,3�t� − r ,i = 1, . . . ,p ,

where

ui = �ui,1ui,2�T, yi = �yi,1yi,2�T.

The parameter values are given by

� = 10, r = 28, b = 8/3. �29�

Note that for ui�0 each Lorenz system has three equilibria
given by

�0,0,0�,���b�r − 1�, � �b�r − 1�,r − 1� , �30�

the latter two corresponding to unstable foci. Furthermore,
with the parameter values �29� it exhibits a chaotic
attractor.17

If we linearize the coupled system �28� and �3� around
the synchronized equilibrium

�x�, . . . ,x��, x� = ���b�r − 1�, � �b�r − 1�,r − 1� , �31�

then we obtain the linear system �14�, where the matrices are
specified as

A = 
 − � � 0

1 − 1 ��b�r − 1�

��b�r − 1� ��b�r − 1� − b
� , �32�

B = CT = 
0 0

1 0

0 1
� .

It is easy to show that the stability of the linearized system
does not depend on which equilibrium x� in Eq. �31� is con-
sidered, Therefore, we will restrict ourselves to the one in the
positive octant.

In what follows we analyze the stability properties of the
synchronized equilibria �31� in the �k ,�� parameter space.
First we study the asymptotic behavior for large values of the
gain parameters in Sec. IV A. For the standard parameters
�29� this will allow us to make assertions about stability
regions, stability switches, and emerging behavior, which do
not depend on the network topology. Next we present several
numerical examples in Sec. IV B. Finally we perform a non-
linear stability analysis of Eqs. �28� and �3� in Sec. IV C.

A. Asymptotic behavior for large gain values

We first state some technical lemmas.
Lemma 4.1: For large values of k the zeros of the func-

tions fi�� ;k ,0�, i=2, . . . , p , are in the open left half-plane.
Furthermore, the system (14) and (32) has exactly two char-
acteristic roots in the closed right half-plane for �=0, which
are equal to the unstable eigenvalues of A .

Proof: Let i� 	2, . . . , p
. As k→� the function

f i��;k,0�
k2 = det�


� + � − � 0

−
1

k

� + 1

k
− ��i�G� − 1�

�b�r − 1�
k

−
�b�r − 1�

k
−

�b�r − 1�
k

� + b

k
− ��i�G� − 1� ��

uniformly converges on compact subsets of C to the Hurwitz polynomial

det�
� + � − � 0

0 − ��i�G� − 1� 0

0 0 − ��i�G� − 1�
�� = �1 − �i�G��2�� + �� . �33�

From Rouché’s theorem it follows that for sufficiently large k the function f i�� ;k ,0� has at least one zero in the left half-plane
which converges to −� as k→�. Next, from the normalized function

f i��;k,0�
k3 = det���/k�I − 


−
�

k

�

k
0

1

k
−

1

k
+ ��i�G� − 1� −

�b�r − 1�
k

�b�r − 1�
k

�b�r − 1�
k

−
b

k
+ ��i�G� − 1�

��
it follows that for sufficiently large k the function f i�� ;k.0� has two zeros equal to k�̃ j�l�, l=1,2, where
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lim
k→�

�̃l�k� = �i�G� − 1, l = 1,2.

Because R��i�−1�0 one concludes that, as k→�, two ze-
ros of f i move off to infinity without leaving the open left
half-plane, while the other zero converges to −�.

The second assertion follows from the identity

f1��;k,�� = det��I − A� .

�

Lemma 4.2: Assume that ��i��1. Then for large values
of k the zeros of the function

fi��;k,��

are in the open left half-plane for all values of the delay
parameter.

Proof: The equation

f i�j�;k,�� = 0

is equivalent to

det�I − �j�I − A + kBC�−1kBC�i�G�e−j��� = 0.

A necessary solvability condition is given by

r���j�I − A + kBC�−1kBC�i�G�� = 1.

This condition is always violated for large k. Indeed, in the
complex plane the nonzero eigenvalues of the matrix

�j�I − A + kBC�−1kBC�i�G� , �34�

which can be written as

� j
�

k
I −

A

k
+ BC�−1

BC�i�G� ,

converge to the curve

� � 0 �
1

j� + 1
�i�G�

as k→�, uniformly in the parameter ��0. Furthermore, we
have

� 1

1 + j�
�i�G�� � ��i�G�� � 1, ∀ � � 0.

It follows that zeros on the imaginary axis are not possible
for large values of k. Combining this result with Lemma 4.1
leads to the assertion to be proven. �

Lemma 4.3: Assume that ��i�=1. If �z�k� ,��k�� satisfies
Eq. (23) for all k	0, then

lim
k→�

z�k� = 1.

Proof: The assertion follows from the same arguments as
spelled out in the proof of Lemma 4.2. �

A combination of the above results leads to the main
result of this paragraph.

Theorem 4.4: Consider a network of coupled Lorenz
systems (28) with parameters (29) and coupling (3). Assume
that the network satisfies Assumptions 2.1 and 2.2. Then

there exists a number k̂	0 and a function

��:�k̂,�� → R+, k � ���k� , �35�

satisfying the following properties:

(1) there is a constant k̃	 k̂ such that for every k	 k̃ , the
synchronized equilibrium has two characteristic roots in
the open right half-plane for all �� �0,��� , while it is
asymptotically stable for �� ��� ,��+�� , with � suffi-
ciently small;

(2) at �=�� a synchronization preserving Hopf bifurcation
occurs;

(3) for all k� �k̂ ,�� we can factor

���k� =
��k�

k
, �36�

where

lim
k→�

��k� = 0.586 004. �37�

Furthermore, the number k̂ and the function (35) are
independent of the number of subsystems and of the net-
work topology.

Proof: By Lemmas 4.1 and 4.2 the functions f i�� ,k ,��,
where ��i�G���1, have their zeros in the left half-plane for
all values of � if k is sufficiently large. So for large k all
stability switches in the delay parameter space are due to the
functions f i�� ;k ,�� such that ��i�=1, and Eq. �23� simplifies
to

j� � ��A − kBC + kBCz�, �z� = 1. �38�

If we set z=1+ j� /k then this expression becomes

j� � ��A + j�BC� �39�

under the constraint

�1 + j
�

k
� = 1. �40�

We analyze the solutions of Eqs. �39� and �40� as k→�.
From Lemma 4.3 and the constraint �40� it follows that � /k
must converge to zero along the real axis as k→�. Hence
the asymptotic behavior for k→� is determined by the so-
lutions �� ,�� of Eq. �39�, where � is restricted to be real. To
find these solutions matrix pencil techniques can be used,
similar to Proposition 3.4. Equation �39� implies

− j� � ��AT − j��BC�T� �41�

and under the condition ��R, Eqs. �39� and �41� imply on
their turn

det�A � AT + �j��BC� � I − I � �BC�T�� = 0. �42�

Thus all solutions of Eq. �39� under the constraint ��R can
be directly computed by calculating the real solutions of the
eigenvalue problem �42� in the first step in order to obtain a
finite number of candidate values for � and next, solving Eq.
�39� for �. With the parameter values �29� and with matrices
�32� these solutions are given by ��̂1 , �̂1� and ��̂2 , �̂2�, where
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�̂1 = − 3.995 906 4, �̂1 = 6.818 903 4,

�43�
�̂2 = 5.223 604 5, �̂1 = 14.811 554.

As a consequence, for large values of k the solutions of Eq.
�38� are

��,z� = ��l�k�,zl�k��, l = 1,2,

where

zl�k� = 1 + j
�l�k�

k
, l = 1,2

and

lim
k→�

�l�k� = �̂l, lim
k→�

�l�k� = �̂l, l = 1,2.

Next, from Eqs. �24� and �43� it follows that for sufficiently
large k, the first critical delay value, as the delay is increased
from zero, is given by

���k� ª
��z̄1�k��

�1�k�
=

��k�
k

,

where

lim
k→�

��k� =
1

�̂1

lim
k→�

k � �z̄1�k��

= −
1

�̂1

lim
k→�

k arctan��1�k�/k�

= −
�̂1

�̂1

= 0.586 004.

As this switch is due to a zero of f1�� ;k ,�� it is independent
of the network topology and the emanating solutions have
the form


y1�t�
]

yp�t�
� = 
V

]

V
�ej�t,

where F1�j� ;k ,��V=0, i.e., synchronization is preserved in
the emanating solutions.

Finally, we consider the crossing direction of the char-
acteristic roots on the imaginary for

�k,�� = �k,���k��

when the delay is varied. According to Eq. �26� the crossing
direction is determined by the sign of

s�k� ª R�u�k��BCv�k�j�1�k�z1�k�
u�k��v�k�

� ,

where u�k� and v�k� are left and right null vectors of

j�1�k�I − A + kBC − kBCz1�k� = j�1�k�I − A − BCj�1�k� .

It follows that

lim
k→�

s�k� = R� û�BCv̂j�̂1

û�v̂
� ,

with û and v̂ left and right null vectors of j�̂1I−A−BCj�̂1.
For the parameters �29� and with matrices �32� we arrive at

lim
k→�

s�k� = 3.498 024 1 	 0.

Thus for large k the first stability switch, which occurs at
�=���k�, is toward stability, and it results in asymptotic sta-
bility by Lemma 4.1. When putting together the above re-
sults the statements of the theorem follow. �

B. Examples

We illustrate the obtained results with several examples
with different network topologies. The computations of sta-
bility regions are done as described in Sec. III B.

1. Ring topology, unidirectional coupling
We consider a ring topology with unidirectional cou-

pling, described by the adjacency matrix

G = 

0 ¯ 0 1

1 0

� �

1 0
� � Rp�p, �44�

which has the following properties:

�l�G� = e−j�2��l−1�/p�, El = 

1

e−j�2��l−1�/p�

]

e−j�2��p−1��l−1�/p�
�

for l=1, . . . , p.

If Eq. �17� is satisfied for �̂= j�, �	0, then the emanat-
ing solution �19� becomes


�1�t�
]

�p�t�
� = c


Vej�t

Vej�t�−2��l−1�/p�

Vej�t�−4��l−1�/p�

]

Vej�t−�2�p−1���l−1�/p�
� . �45�

It can be interpreted as a traveling wave solution, where the
agents follow each other with a phase shift of 360�l−1� / p �in
degrees�. Therefore, if the characteristic root �̂ on the imagi-
nary axis corresponds to a Hopf bifurcation of the original
nonlinear system �1� and �3� for a critical value of some free
parameter, we refer to this bifurcation as a “Hopf
360�l−1� / p” bifurcation. In a sense, this type of traveling
wave solution strongly reminds that of the gait of an animal,
be it that the underlying oscillator is different from a Lorenz
oscillator.

With the individual agents taken as Lorenz systems �28�
with parameters �29� and with p=4 and p=12 we display the
stability regions in the delay parameter space of the synchro-
nized equilibria �31� in Fig. 1. The Hopf 0 bifurcation curves
are independent of the number of subsystems, because they
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are induced by the zeros of f1�� ;k ,��. The first one corre-
sponds to the function �35�. By Theorem 4.4 the quantities
indicated in boldface on the figure are independent of the
number of agents and of the network topology.

2. Ring topology, bidirectional coupling
A ring topology with bidirectional coupling between the

agents is described by the matrix

G =
1

2

0 1 1

1 0 1

� � �

1 0 1

1 1 0
� � Rp�p, �46�

satisfying

�l�G� = cos�2�

p
�l − 1��, l = 1, . . . ,q ,

where q= �p+2� /2 if p is even and q= �p+1� /2 if p is odd.
All eigenvalues have multiplicity 2, excepting �1�G�=1 and,
if p is even, ��p+2�/2�G�. The corresponding eigenvectors are

�cos�2��l − 1� · �p − 1�
p

�¯ cos�2��l − 1� · 1

p
�1�T

and

�sin�2��l − 1� · �p − 1�
p

�¯ sin�2��l − 1� · 1

p
�0�T

.

Note that if all subsystems are Lorenz systems described by
Eqs. �28� and �29� then for large values of k the stability
switches are only associated with the eigenvalues �1 and
corresponding eigenvectors �1 1¯1�T and �1�−1��−1�2

¯

�−1�p−1�T �see Lemma 4.2�. They result in either synchro-
nized motion or standing waves. This is due to the bidirec-
tional coupling and is in contrast to the case of unidirectional
coupling addressed above, where traveling wave solutions
naturally appear.

For p=4 the stability regions in the �k ,�� parameter
space are shown in Fig. 2. Note from the lower pane that the
number of characteristic roots in the right half-plane changes
from 2 to 6 when crossing the horizontal curve. This is due
to the double eigenvalue of G at zero.

3. Cross topology
The topology induced by the matrix

G = 

0 1 0 0 0 0 0
1
2 0 1

2 0 0 0 0

0 1
4 0 1

4 0 1
4

1
4

0 0 1
2 0 1

2 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

� �47�

is displayed in Fig. 3.
The eigenvalues and corresponding eigenvectors of G

are
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FIG. 1. �Color online� Stability regions of the synchronized equilibrium �31�
of Lorenz systems �28� and �29� coupled in a ring configuration described
by Eq. �44� for p=4 �top frame and middle frame, on two different scales�
and p=12 �lower frame�. The numbers refer to the number of characteristic
roots in the closed right half-plane. The quantities indicated in boldface are
independent of the network topology and the number of subsystems.
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��1�G� ¯ �7�G�� = �1
1

2
−

1

2
− 1

�2

2
−

�2

2
0�

and

�E1 ¯ E7� = 

1 2 2 1 �2 �2 0

1 1 − 1 − 1 1 − 1 0

1 − 1 − 1 1 0 0 0

1 1 − 1 − 1 − 1 1 0

1 2 2 1 �2 − �2 0

1 − 2 2 − 1 0 0 − 1

1 − 2 2 − 1 0 0 1

� .

With all agents described by Eqs. �28� and �29� we dis-
play in Fig. 4 the stability regions in the �k ,�� parameter
space of the synchronized equilibria �31�. The type of Hopf
bifurcation is displayed by indicating the corresponding ei-
genvector of G. Following from Lemma 4.2 only the Hopf
curves corresponding to eigenvalues on the unit circle of G
persist for large k, namely, �1�G�=1 and �4�G�=−1. The
bold curve once again corresponds to the function �35�.

C. Beyond the linearized stability analysis

The exact linearized stability analysis in the previous
paragraphs illustrates that for large values of the coupling
gain and small values of the delay-coupled Lorenz systems
exhibit some generic behavior independent of the network
topology. In what follows the results are strengthened by a
nonlinear stability analysis.

We reconsider Theorem 4.4 and make some observa-
tions. The presence of the synchronization preserving Hopf
bifurcation at �=���k�, the fact that for large values of k the
functions f2�� ;k ,�� , . . . , fp�� ;k ,��, that describe the syn-
chronization error around the synchronized equilibrium, have
all zeros in the open left half-plane for all �� �0,���k��, and
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FIG. 2. �Color online� Stability regions of the synchronized equilibrium �30�
of Lorenz systems �28� and �29� coupled in a ring configuration described
by Eq. �46� on two different scales.

FIG. 3. Network topology with adjacency matrix �47�.
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FIG. 4. �Color online� Stability regions in the �k ,�� parameter space of the
synchronized equilibrium of coupled Lorenz systems on two different
scales. The network topology is described by Eq. �47�.
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the observed synchronized behavior in our experiments for
all �� �0,���k�� suggest that asymptotic synchronization can
also be achieved for all �� �0,���k��, though the dynamics
on the synchronization manifold are no longer characterized
by the presence of stable equilibria. Furthermore, the
asymptotic behavior of the curve k����k�, described by
Eqs. �36� and �37�, suggests that the natural parameters in the
analysis are rather the gain parameter k and the normalized
delay parameter k�. These observations do hold and are ap-
parent from the following theorem.

Theorem 4.5: Consider a network of coupled Lorenz
systems (28) with parameters (29) and coupling (3). Assume
that the network satisfies Assumptions 2.1 and 2.2. Let

y = �y1, . . . ,yp�

and define the functions

Vs�y� ª �
i=1

p


iV�yi�, Hs�y� ª �
i=1

p


iH�yi� ,

where 
 is defined as in Corollary 2.3,

V�yi� ª
1
2 yi

Tyi

and

H�yi� ª yi,1
2 + byi,2

2 + bryi,2. �48�

The following results hold.

(1) All solutions of Eqs. (28) and (3) are bounded and con-
verge to the set �, defined as

� ª �x � R3p:Vs�y� � vm and

�xi,1� ��2vm


i
, i = 1, . . . ,p� , �49�

where the constant vm	0 is such that

Vs�y� � vm ⇒ Hs�y� � 0. �50�

(2) The set � is a forward invariant set of Eqs. (28) and (3).

(3) For all C	0, there exists a number k̂	0, such that all
synchronized solutions in � exhibit asymptotically

stable error dynamics whenever k	 k̂ and k��C.

Sketch of proof: Because the coupling affects the dynam-
ics on the synchronization manifold for ��0, proving
boundedness properties of the solutions is a necessary step in
the analysis �see also the discussion in Ref. 21 in this con-
text�. The first and second statements are due to a semipas-
sivitylike property of the individual oscillators, more pre-
cisely the fact that the derivative of the function V�yi� along
the solutions of Eq. �28� satisfies

V̇ = − H�yi� + yi
Tui,

with H�yi�	0 for large values of �yi�. The proofs rely on a
composed Lyapunov–Krasovskii functional and a Lyapunov–
Razumikhin function for the output y, where, inspired by
Ref. 5 the components are weighted by the left eigenvector 

of the adjacency matrix G. The third statement of the theo-

rem follows from the uniform stability of the null solution of
Eq. �12� for large k when x1 is confined to a compact set.
This is proved using techniques from L2 gain analysis,19

where x1�t� in Eq. �12� is interpreted as a time-varying per-
turbation. For a detailed proof we refer to the Appendix. �

The main results of the section, Theorems 4.4 and 4.5,
are graphically displayed in Fig. 5. Whereas Theorem 4.5
only makes assertions about preservation of synchronized
behavior in the emanating solutions in the Hopf 0 bifurcation
of the synchronized equilibrium, Theorem 4.5 states that for
an arbitrary value of C asymptotic synchronization can be
achieved for all �� �0,C /k�. If k is chosen such that
asymptotic synchronization is guaranteed for �� �0,���k�
+�� with �	0 some small number and if the system is ini-
tialized close to the synchronized equilibrium and the delay
parameter slowly swept from ���k�+� to zero, then the at-
tractor of the solution evolves from the stable synchronized
equilibrium to synchronized chaotic behavior for �=0 be-
cause the synchronization between the agents is maintained
throughout every bifurcation. Recall that the dynamics on the
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FIG. 5. �Color online� Graphical illustration of the results of Theorems 4.4
and 4.5 for large values of the coupling gain k on a linear scale �left� and on
a logarithmic scale �right�. The quantities indicated in boldface are indepen-
dent of the number of agents and network topology.
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synchronization manifold are described by Eq. �8�, which
reduces to ẋ1= f�x1� for �=0.

V. CONCLUSIONS

We studied the synchronization of coupled nonlinear os-
cillators with delay in the coupling, Eqs. �1� and �3�, with the
emphasis on coupled Lorenz systems. First, the state trans-
formation to Eq. �5� led us to necessary conditions on the
network topology for the existence of synchronized solu-
tions. Next we performed a stability analysis of synchronized
equilibria in a �gain, delay� parameter space. Instrumental to
this study we employed a factorization of the characteristic
equation, which separates the nominal behavior and the syn-
chronization error dynamics, and we revealed the precise
role of the eigenvalues and the eigenvectors of the adjacency
matrix of the graph on the behavior of the solutions. The
latter allowed us to classify the modes of the system, as well
as the Hopf bifurcation curves and the emerging behavior on
the onset of instability. As a result of this analysis for the
case of coupled Lorenz systems we proved that for suffi-
ciently large gain values, there always exists a stability inter-
val in the delay parameter space that does not contain the
zero delay value. Furthermore, this behavior is generic be-
cause both the critical delay value, ���k�, and the type of
corresponding bifurcation �a synchronization preserving
Hopf bifurcation in the sense that if the delay is reduced
beyond the critical value the equilibrium becomes unstable
without losing the synchronization between the agents� do
not depend on the network topology and the number of
agents. Finally, these results were complemented with a non-
linear stability analysis, which among others showed that by
choosing the gain parameter sufficiently large asymptotic
synchronization can actually be achieved over any finite in-
terval in the normalized delay k�, again independently of the
network.

Instead of directly deriving synchronization conditions
for the nonlinear system �1� and �3� the methodology of the
paper was based on considering first the linearized stability
problem around a synchronized equilibrium, which can be
exactly solved. Such an approach directly leads to insights in
the problem, because not only the stability regions in the
�k ,�� parameter space can be characterized but also the so-
lutions on the onset of instability by considering the structure
of the eigenspaces in the bifurcations. In addition, the gained
qualitative insights and observations may lead to a better
targeted and less conservative nonlinear stability analysis.
This was illustrated in this paper with coupled Lorenz sys-
tems. Indeed, the formulation and proof of Theorem 4.5 were
based on the following properties suggested by the linear
stability analysis: �i� behavior independent of the network for
large coupling gains and small delays, �ii� natural parameters
�k ,k�� rather than �k ,��, and �iii� instead of analyzing stabil-
ity of the full error dynamics Eq. �9� directly, it is preferred
to analyze the decoupled systems �12�, where the magnitudes
of the eigenvalues of the adjacency matrix suggest the natu-
ral type of criterion to be used.

It should be noted that the results of the article and, in
particular, Algorithm 3.5 can be directly extended to the case

where self-feedback is also considered, though the qualita-
tive results described in Sec. IV will be different. If the
agents are not completely identical, then in general �per-
fectly� synchronized solutions do not exist. This can be seen
from Eq. �5� where terms related to the deviations would
appear in the right-hand side. Though the analysis in the
paper has been performed step by step using a particular
decomposition or factorization, holding for identical agents
and uniform delays only, the final results for the coupled
system �presence of a synchronized steady state solution, its
stability regions and Hopf bifurcation curves in the �k ,��
plane, the structure of the eigenfunctions corresponding to
the Hopf bifurcations� will be slightly perturbed only if the
differences between the agents and the delay parameters are
sufficiently small. This means that Theorem 4.4 remains ap-
proximately valid in the sense that for large k and particular
values of � there exists an almost synchronized equilibrium,
which is stable but loses stability beyond ���� while main-
taining the solutions close to being synchronized. This indi-
cates that for � sufficiently small, the synchronization error
dynamics exhibits an attractor whose size can be made arbi-
trarily small by reducing the difference between the agents.
The effect of a small time variation of delays and other sys-
tem parameters around a nominal value can be taken into
account using the ideas of Ref. 13, where the time-varying
parameters are essentially treated as perturbations of time-
invariant parameters. However, to analyze the effect of large
variations or the effects of a time-varying network topology,
time-domain methods become necessary at the cost of intro-
ducing conservatism in the analysis.
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APPENDIX: PROOF OF THEOREM 4.5

We split the proof in two parts.

1. Part I: Boundedness properties „1… and „2…

From the first equation of Eq. �28�,

xi,1�t� = − �xi,1�t� + �xi,2�t� ,

it follows that xi,1 can be interpreted as the result of a first
order low-pass filter applied to xi,2. Therefore it is sufficient
to show that the outputs y= �y1 , . . . ,yp� converge to the set

�r = 	y � R2p:Vs�y� � vm


and to show that this set is a forward invariant set.
The derivative of the function Vs along the solutions of

Eqs. �28� and �3� satisfies
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V̇s�t� = − �
i=1

p


iH�yi�t�� + ��t� ,

where

��t� = k�
i=1

p


iyi�t�T��
l=1

p

�i,l�yl�t − �� − yi�t���
= − k�

i=1

p


iyi�t�Tyi�t� + k�
i=1

p


i�
�=1

2

�
l=1

p

�i,lyi,��t�yl,��t − ��

� −
k

2�
i=1

p


iyi�t�Tyi�t� +
k

2�
i=1

p


i�
�=1

2

�
l=1

p

�i,lyl,��t − ��2

= −
k

2�
i=1

p


iyi
T�t�yi�t� +

k

2�
�=1

2


TG
y1,�
2 �t − ��

]

yp,�
2 �t − ��

�
= −

k

2�
i=1

p


iyi
T�t�yi�t� +

k

2�
�=1

2


T
y1,��t − ��2

]

yp,��t − ��2 �
= −

k

2�
i=1

p


i�yi�t�Tyi�t� − yi�t − ��Tyi�t − ���

= −
k

2
�Vs�y�t�� − Vs�y�t − ���� .

We conclude

V̇s�t� � − �
i=1

p


iH�yi�t�� +
k

2
�Vs�y�t�� − Vs�y�t − ���� . �A1�

Furthermore, when defining yt as the function segment �
� �t−� , t��y���, the derivative of the functional

W�yt� ª Vs�y�t�� +
k

2
�

t−�

t

Vs�y�s��ds

along the solutions of Eqs. �1� and �3� satisfies

Ẇ�t� � − �
i=1

p


iH�yi�t�� . �A2�

First, assume that y0��r. From Eqs. �50� and �A1� we
have yt��r for all t�0. The argument is by contradiction: if
the solution would reach ��r for the first time at t= t̂, then we

would have Vs�t̂�=v f and V̇s�t̂��0. However, since Vs�y�t̂��
−Vs�y�t̂−���	0, Eqs. �50� and �A1� imply V̇s�t̂��0. This
proves that �r is an invariant set.

Next, assume that y0��r. If y�0���r, then Eq. �A2�
implies that W is a strictly decreasing function as long as
�i=1

p 
iH�yi�t��	0. Hence, whenever y0��r and y�t���r

for all t�0, there exists a finite time t̂1	0 such that y�t̂1�
���r. Let �1=supt��t̂1−�,t̂1� Vs�y�t��. If y�t���r for some
t� �t̂1 , t̂1+�� then Eq. �A1� implies

V̇s�t� �
k

2
��1 − Vs�t�� .

Hence,

�2 ª sup
t��t̂1,t̂1+��

Vs�t� � �1�1 − e−�k/2��� + e−�k/2��vm.

Repeating the same argument yields

��+1 ª sup
t��t̂1+��−1��,t̂1+���

Vs�t�

� ���1 − e−�k/2��� + e−�k/2��vm, ∀ � � 1.

Consequently, we have

lim
i→�

�i = vm.

This shows that, whatever the initial condition x0ªx��� ,�
� �−� ,0�, the outputs y converge to the forward invariant set
�r.

2. Part II: Asymptotic synchronization

Choose C	0. According to the decomposition �12� we
have to show that the p−1 systems


̇i,1 = ��
i,2 − 
i,1� ,


̇i,2 = r
i,1 − 
i,2 − x1,3�t�
i,1 − x1,1�t�
i,3 − k
i,2

+ k�i�G�
i,2�t − �� , �A3�


̇i,3 = − b
i,3 + x1,2�t�
i,1 + x1,1�t�
i,2 − k
i,3

+ k�i�G�
i,3�t − ��, i = 2, . . . ,p ,

are asymptotically stable for k��C and k sufficiently large.
When applying the transformation of time

t�new�=kt�old�,

Eq. �A3� can be written as


̇i�t� = A0�k�
i�t� + A1
i�t − �� + B0��t,k�
i�t� , �A4�

where

A0�k� = 
−
1

k
�

1

k
� 0

0 − 1 0

0 0 − 1
�, A1 = 
0 0 0

0 �i�G� 0

0 0 �i�G�
� ,

B0 = 
0 0

1 0

0 1
�, ��t,k� =

1

k
�r − x1,3�t� − 1 − x1,1�t�

x1,2�t� x1,1�t� − b
� ,

� = k� .

Note that Eq. �A4� can be seen as an equation with two
independent parameters: the gain k and the scaled delay
�=k�.

In what follows we take a perturbation point of view and
consider ��t ,k� as a time-varying, complex uncertainty. Fur-
thermore, we interpret Eq. �A4� as the feedback interconnec-
tion of the nominal system


̇i�t� = A0�k�
i�t� + A1
i�t − �� + B0w�t� , �A5�

033110-14 W. Michiels and H. Nijmeijer Chaos 19, 033110 �2009�

Downloaded 03 Nov 2009 to 131.155.151.134. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



where the feedback is closed with

w�t� = ��t,k�
i�t� .

The nominal system with w�0 is asymptotically stable for
all values of �. Hence, by arguments of L2 gain analysis �see,
e.g., Ref. 19�, the system �A4� is uniformly asymptotically
stable if the product of the induced L2 gains in the feedback
loop is smaller than 1, that is,

max
t�0

���t,k��2�G�j�;k,���H�
� 1, �A6�

where

G�j�;k,�� ª �j�I − A0�k� − A1e−j���−1B0

is the transfer function of Eq. �A5� from w to 
i. Here � · �H�

denotes the H-infinity norm �see Ref. 22� for the definition
and an introduction on H-infinity control theory�. A simple
calculation yields

lim
k→�

�G�j�;k,���H�
= sup

��0

1

�j� + 1 − �i�G�e−j���
,

which is bounded for all values of �. It follows that

lim
k→�

sup
���0,C�

�G�j�;k,���H�
� � .

In the light of this result we reconsider the stability condition
�A6�. Since x1�t� is confined to the compact set � for all
t�0, we have

lim
k→�

max
t�0

���t,k��2 = 0.

Hence, there exists a threshold k̂ such that for k	 k̂ and all
�� �0,C� the stability condition �A6� is satisfied. The third
assertion of Theorem 4.5 follows.
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