261 research outputs found

    Human Mars Mission Design - The Ultimate Systems Challenge

    Get PDF
    A human mission to Mars will occur at some time in the coming decades. When it does, it will be the end result of a complex network of interconnected design choices, systems analyses, technical optimizations, and non-technical compromises. This mission will extend the technologies, engineering design, and systems analyses to new limits, and may very well be the most complex undertaking in human history. It can be illustrated as a large menu, or as a large decision tree. Whatever the visualization tool, there are numerous design decisions required to assemble a human Mars mission, and many of these interconnect with one another. This paper examines these many decisions and further details a number of choices that are highly interwoven throughout the mission design. The large quantity of variables and their interconnectedness results in a highly complex systems challenge, and the paper illustrates how a change in one variable results in ripples (sometimes unintended) throughout many other facets of the design. The paper concludes with a discussion of some mission design variables that can be addressed first, and those that have already been addressed as a result of ongoing National Aeronautics and Space Administration (NASA) developments, or as a result of decisions outside the technical arena. It advocates the need for a 'reference design' that can be used as a point of comparison, and to illustrate the system-wide impacts as design variables change

    Coronary 18F-Fluoride Uptake and Progression of Coronary Artery Calcification

    Get PDF
    Background Positron emission tomography (PET) using 18F-sodium fluoride (18F-fluoride) to detect microcalcification may provide insight into disease activity in coronary atherosclerosis. This study aimed to investigate the relationship between 18F-fluoride uptake and progression of coronary calcification in patients with clinically stable coronary artery disease. Methods Patients with established multivessel coronary atherosclerosis underwent 18F-fluoride PET-computed tomography angiography and computed tomography calcium scoring, with repeat computed tomography angiography and calcium scoring at one year. Coronary PET uptake was analyzed qualitatively and semiquantitatively in diseased vessels by measuring maximum tissue-to-background ratio. Coronary calcification was quantified by measuring calcium score, mass, and volume. Results In a total of 183 participants (median age 66 years, 80% male), 116 (63%) patients had increased 18F-fluoride uptake in at least one vessel. Individuals with increased 18F-fluoride uptake demonstrated more rapid progression of calcification compared with those without uptake (change in calcium score, 97 [39-166] versus 35 [7-93] AU; P<0.0001). Indeed, the calcium score only increased in coronary segments with 18F-fluoride uptake (from 95 [30-209] to 148 [61-289] AU; P<0.001) and remained unchanged in segments without 18F-fluoride uptake (from 46 [16-113] to 49 [20-115] AU; P=0.329). Baseline coronary 18F-fluoride maximum tissue-to-background ratio correlated with 1-year change in calcium score, calcium volume, and calcium mass (Spearman ρ=0.37, 0.38, and 0.46, respectively; P<0.0001 for all). At the segmental level, baseline 18F-fluoride activity was an independent predictor of calcium score at 12 months (P<0.001). However, at the patient level, this was not independent of age, sex, and baseline calcium score (P=0.50). Conclusions Coronary 18F-fluoride uptake identifies both patients and individual coronary segments with more rapid progression of coronary calcification, providing important insights into disease activity within the coronary circulation. At the individual patient level, total calcium score remains an important marker of disease burden and progression. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02110303

    Ex vivo 18F-fluoride uptake and hydroxyapatite deposition in human coronary atherosclerosis

    Get PDF
    Early microcalcification is a feature of coronary plaques with an increased propensity to rupture and to cause acute coronary syndromes. In this ex vivo imaging study of coronary artery specimens, the non-invasive imaging radiotracer, 18F-fluoride, was highly selective for hydroxyapatite deposition in atherosclerotic coronary plaque. Specifically, coronary 18F-fluoride uptake had a high signal to noise ratio compared with surrounding myocardium that makes it feasible to identify coronary mineralisation activity. Areas of 18F-fluoride uptake are associated with osteopontin, an inflammation-associated glycophosphoprotein that mediates tissue mineralisation, and Runt-related transcription factor 2, a nuclear protein involved in osteoblastic differentiation. These results suggest that 18F-fluoride is a non-invasive imaging biomarker of active coronary atherosclerotic mineralisation

    The biogeochemical impact of glacial meltwater from Southwest Greenland

    Get PDF
    Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary
    corecore