9 research outputs found

    Antioxidant and lipid supplementation improve the development of photoreceptor outer segments in pluripotent stem cell-derived retinal organoids

    Get PDF
    The generation of retinal organoids from human pluripotent stem cells (hPSC) is now a well-established process that in part recapitulates retinal development. However, hPSC-derived photoreceptors that exhibit well-organized outer segment structures have yet to be observed. To facilitate improved inherited retinal disease modeling, we determined conditions that would support outer segment development in maturing hPSC-derived photoreceptors. We established that the use of antioxidants and BSA-bound fatty acids promotes the formation of membranous outer segment-like structures. Using new protocols for hPSC-derived retinal organoid culture, we demonstrated improved outer segment formation for both rod and cone photoreceptors, including organized stacked discs. Using these enhanced conditions to generate iPSC-derived retinal organoids from patients with X-linked retinitis pigmentosa, we established robust cellular phenotypes that could be ameliorated following adeno-associated viral vector-mediated gene augmentation. These findings should aid both disease modeling and the development of therapeutic approaches for the treatment of photoreceptor disorders

    NMDA receptor activation induces long-term potentiation of glycine synapses.

    No full text
    Of the fast ionotropic synapses, glycinergic synapses are the least well understood, but are vital for the maintenance of inhibitory signaling in the brain and spinal cord. Glycinergic signaling comprises half of the inhibitory signaling in the spinal cord, and glycinergic synapses are likely to regulate local nociceptive processing as well as the transmission to the brain of peripheral nociceptive information. Here we have investigated the rapid and prolonged potentiation of glycinergic synapses in the superficial dorsal horn of young male and female mice after brief activation of NMDA receptors (NMDARs). Glycinergic inhibitory postsynaptic currents (IPSCs) evoked with lamina II-III stimulation in identified GABAergic neurons in lamina II were potentiated by bath-applied Zn2+ and were depressed by the prostaglandin PGE2, consistent with the presence of both GlyRα1- and GlyRα3-containing receptors. NMDA application rapidly potentiated synaptic glycinergic currents. Whole-cell currents evoked by exogenous glycine were also readily potentiated by NMDA, indicating that the potentiation results from altered numbers or conductance of postsynaptic glycine receptors. Repetitive depolarization alone of the postsynaptic GABAergic neuron also potentiated glycinergic synapses, and intracellular EGTA prevented both NMDA-induced and depolarization-induced potentiation of glycinergic IPSCs. Optogenetic activation of trpv1 lineage afferents also triggered NMDAR-dependent potentiation of glycinergic synapses. Our results suggest that during peripheral injury or inflammation, nociceptor firing during injury is likely to potentiate glycinergic synapses on GABAergic neurons. This disinhibition mechanism may be engaged rapidly, altering dorsal horn circuitry to promote the transmission of nociceptive information to the brain

    Recurrent febrile seizures alter intrahippocampal temporal coordination but do not cause spatial learning impairments.

    No full text
    ObjectiveFebrile seizures (FSs) are the most common form of seizures in children. Single short FSs are benign, but FSs lasting longer than 30 min, termed febrile status epilepticus, may result in neurological sequelae. However, there is little information about an intermediary condition, brief recurrent FSs (RFSs). The goal of this study was to determine the role of RFSs on spatial learning and memory and the properties of spontaneous hippocampal signals.MethodsA hippocampus-dependent active avoidance task was used to assess spatial learning and memory in adult rats that underwent experimental RFSs (eRFSs) in early life compared with their littermate controls. Following completion of the task, we utilized high-density laminar probes to measure spontaneous hippocampal CA1 circuit activity under urethane anesthesia, which allowed for the simultaneous recording of input regions in CA1 associated with both CA3 and entorhinal cortex.ResultsRFSs did not result in deficits in the active avoidance spatial test, a hippocampus-dependent test of spatial learning and memory. However, in vivo high-density laminar electrode recordings from eRFS rats had significantly altered power and frequency expression of theta and gamma bandwidths as well as signaling efficacy along the CA1 somatodendritic axis. Thus, although eRFS modified CA1 neuronal input/output dynamics, these alterations were not sufficient to impair active avoidance spatial behavior.SignificanceThese findings indicate that although eRFSs do not result in spatial cognitive deficits in the active avoidance task, recurrent seizures do alter the brain and result in longstanding changes in the temporal organization of the hippocampus
    corecore