50 research outputs found

    Coopération modélisation : discrimination pour la reconnaissance d'écriture manuscrite

    Get PDF
    -Reconnaître l'écriture manuscrite est un problème d'une telle complexité qu'il est devenu courant de faire coopérer plusieurs algorithmes de classification. Dans cet article, nous présentons un classifieur hybride original. Un premier expert de modélisation détermine les deux classes les plus pertinentes en comparant le symbole inconnu à un ensemble exhaustif de symboles. Le second, discriminant, permet de lever les ambiguïtés. Cette architecture hybride exploite le fait que la "bonne" classe appartient le plus souvent aux deux classes les plus pertinentes trouvées par le premier classifieur. Les expérimentations, conduites sur une base de test de 20000 formes (62 classes), montrent que l'apport relatif de la coopération s'élève à 30%

    SFCOMPO 2.0 – A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    Full text link
    SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF) samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA). The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website

    NDEC: A NEA platform for nuclear data testing, verification and benchmarking

    Full text link
    The selection, testing, verification and benchmarking of evaluated nuclear data consists, in practice, in putting an evaluated file through a number of checking steps where different computational codes verify that the file and the data it contains complies with different requirements. These requirements range from format compliance to good performance in application cases, while at the same time physical constraints and the agreement with experimental data are verified. At NEA, the NDEC (Nuclear Data Evaluation Cycle) platform aims at providing, in a user friendly interface, a thorough diagnose of the quality of a submitted evaluated nuclear data file. Such diagnose is based on the results of different computational codes and routines which carry out the mentioned verifications, tests and checks. NDEC also searches synergies with other existing NEA tools and databases, such as JANIS, DICE or NDaST, including them into its working scheme. Hence, this paper presents NDEC, its current development status and its usage in the JEFF nuclear data project

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Benchmarking and validation activities within JEFF project

    Get PDF
    The challenge for any nuclear data evaluation project is to periodically release a revised, fully consistent and complete library, with all needed data and covariances, and ensure that it is robust and reliable for a variety of applications. Within an evaluation effort, benchmarking activities play an important role in validating proposed libraries. The Joint Evaluated Fission and Fusion (JEFF) Project aims to provide such a nuclear data library, and thus, requires a coherent and efficient benchmarking process. The aim of this paper is to present the activities carried out by the new JEFF Benchmarking and Validation Working Group, and to describe the role of the NEA Data Bank in this context. The paper will also review the status of preliminary benchmarking for the next JEFF-3.3 candidate cross-section files

    The joint evaluated fission and fusion nuclear data library, JEFF-3.3

    Get PDF
    The joint evaluated fission and fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides 235^{235}U, 238^{238}U and 239^{239}Pu, on 241^{241}Am and 23^{23}Na, 59^{59}Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yields, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data for the evaluations. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 performes very well for a wide range of nuclear technology applications, in particular nuclear energy

    Contribution à l'étude de la production d'U-233 en combustible MOX-ThPu en réacteur à eau sous pression. Scénarios de transition vers des concepts isogénérateurs Th/U-233 en spectre thermique. Développement du code MURE d'évolution du combustible.

    No full text
    If nuclear power is to provide a significant fraction of the growing world energy demand, only through the breeding concept can the development of sustainable nuclear energy become a reality. The study of such a transition, from present-day nuclear technologies to future breeding concepts is therefore pertinent. Among these future concepts, those using the thorium cycle Th/U-233 in a thermal neutron spectrum are of particular interest; molten-salt type thermal reactors would allow for breeding while requiring comparatively low initial inventories of U-233. The upstream production of U-233 can be obtained through the use of thorium-plutonium mixed oxyde fuel in present-day light water reactors. This work presents, firstly, the development of the MURE evolution code system, a C++ object-oriented code that allows the study, through Monte Carlo (M.C.) simulation, of nuclear reactors and the evolution of their fuel under neutron irradiation. The M.C. methods are well-suited for the study of any reactor, whether it'd be an existing reactor using a new kind of fuel or a future concept altogether, the simulation is only dependent on nuclear data. Exact and complex geometries can be simulated and continuous energy particle transport is performed. MURE is an interface with MCNP, the well-known and validated transport code, that allows, among other functionalities, to simulate constant power and constant reactivity evolutions. Secondly, the study of MOX ThPu fuel in a conventional light water reactor (REP) is presented; it explores different plutonium concentrations and isotopic qualities in order to evaluate their safety characteristics. Simulation of their evolution allows us to quantify the production of U-233 at the end of burnup. Last, different french scenarios validating a possible transition towards a park of thermal Th/U-233 breeders, are presented. In these scenarios, U-233 is produced in ThPu moxed light water reactors.Dans le contexte d'un déploiement massif du nucléaire civil au niveau mondial, le problème de l'approvisionnement en U-235 se posera à des échéances humaines. L'industrie nucléaire d'aujourd'hui, sous-génératrice, serait, dans un tel cas de figure, inapte à satisfaire les besoins énergétiques du monde de façon durable. La transition vers des filières iso ou surgénératrices, qui optimisent l'utilisation de la matière fissile, est alors pertinente. Parmi les technologies qui permettent une telle optimisation, le cycle du thorium, Th/U-233 utilisé en spectre de neutrons thermique, est doublement intéressant; il permettrait, dans des concepts de type réacteur à sels fondus thermique, l'isogénération de la matière fissile tout en nécessitant de faibles inventaires initiaux en U-233. La production de cette quantité d'U-233, nécessaire au démarrage de la filière, peut être produite en amont, dans des réacteurs d'aujourd'hui (à eau sous pression), utilisant un combustible de type mixte oxyde thorium-plutonium. Ce travail concerne d'une part le développement d'outils de calcul nécessaires à l'étude neutronique, par simulation Monte Carlo (M.C), des réacteurs nucléaires et de leur combustible. Qu'ils soient de génération future ou de technologie actuelle utilisant un combustible innovant, la simulation des réacteurs par les méthodes M.C. est particulièrement bien adaptée car elle ne repose que sur la connaissance des données nucléaires, et peut traiter des géométries complexes et exactes en effectuant le transport des neutrons à énergie continue. Le code MURE, qui encapsule le code de transport validé et reconnu MCNP, a été écrit pour simuler l'évolution du combustible sous irradiation. C'est un code modulaire, écrit en C++, qui permet, entre autres, de simuler des évolutions à puissance et à réactivité constantes. Dans un deuxième temps, nous avons entrepris l'étude du combustible MOX ThPu en REP en vue de détérminer des teneurs en plutonium satisfaisant les critères de sûreté et avons quantifié la production d'uranium-233 en fin de combustion. Ceci nous permet de considèrer et de valider différents scénarios de transition du parc français vers un parc de réacteurs isogénérateurs utilisant le cycle du thorium, où l'U-233, aura été produit dans des réacteurs à eau sous pression utilisant du MOX thorié

    Contribution à l'étude de la production d'U-233 en combustible MOX-ThPu en réacteur à eau sous pression. Scénarios de transition vers des concepts isogénérateurs Th/U-233 en spectre thermique. Développement du code MURE d'évolution du combustible.

    No full text
    If nuclear power is to provide a significant fraction of the growing world energy demand, only through the breeding concept can the development of sustainable nuclear energy become a reality. The study of such a transition, from present-day nuclear technologies to future breeding concepts is therefore pertinent. Among these future concepts, those using the thorium cycle Th/U-233 in a thermal neutron spectrum are of particular interest; molten-salt type thermal reactors would allow for breeding while requiring comparatively low initial inventories of U-233. The upstream production of U-233 can be obtained through the use of thorium-plutonium mixed oxyde fuel in present-day light water reactors. This work presents, firstly, the development of the MURE evolution code system, a C++ object-oriented code that allows the study, through Monte Carlo (M.C.) simulation, of nuclear reactors and the evolution of their fuel under neutron irradiation. The M.C. methods are well-suited for the study of any reactor, whether it'd be an existing reactor using a new kind of fuel or a future concept altogether, the simulation is only dependent on nuclear data. Exact and complex geometries can be simulated and continuous energy particle transport is performed. MURE is an interface with MCNP, the well-known and validated transport code, that allows, among other functionalities, to simulate constant power and constant reactivity evolutions. Secondly, the study of MOX ThPu fuel in a conventional light water reactor (REP) is presented; it explores different plutonium concentrations and isotopic qualities in order to evaluate their safety characteristics. Simulation of their evolution allows us to quantify the production of U-233 at the end of burnup. Last, different french scenarios validating a possible transition towards a park of thermal Th/U-233 breeders, are presented. In these scenarios, U-233 is produced in ThPu moxed light water reactors.Dans le contexte d'un déploiement massif du nucléaire civil au niveau mondial, le problème de l'approvisionnement en U-235 se posera à des échéances humaines. L'industrie nucléaire d'aujourd'hui, sous-génératrice, serait, dans un tel cas de figure, inapte à satisfaire les besoins énergétiques du monde de façon durable. La transition vers des filières iso ou surgénératrices, qui optimisent l'utilisation de la matière fissile, est alors pertinente. Parmi les technologies qui permettent une telle optimisation, le cycle du thorium, Th/U-233 utilisé en spectre de neutrons thermique, est doublement intéressant; il permettrait, dans des concepts de type réacteur à sels fondus thermique, l'isogénération de la matière fissile tout en nécessitant de faibles inventaires initiaux en U-233. La production de cette quantité d'U-233, nécessaire au démarrage de la filière, peut être produite en amont, dans des réacteurs d'aujourd'hui (à eau sous pression), utilisant un combustible de type mixte oxyde thorium-plutonium. Ce travail concerne d'une part le développement d'outils de calcul nécessaires à l'étude neutronique, par simulation Monte Carlo (M.C), des réacteurs nucléaires et de leur combustible. Qu'ils soient de génération future ou de technologie actuelle utilisant un combustible innovant, la simulation des réacteurs par les méthodes M.C. est particulièrement bien adaptée car elle ne repose que sur la connaissance des données nucléaires, et peut traiter des géométries complexes et exactes en effectuant le transport des neutrons à énergie continue. Le code MURE, qui encapsule le code de transport validé et reconnu MCNP, a été écrit pour simuler l'évolution du combustible sous irradiation. C'est un code modulaire, écrit en C++, qui permet, entre autres, de simuler des évolutions à puissance et à réactivité constantes. Dans un deuxième temps, nous avons entrepris l'étude du combustible MOX ThPu en REP en vue de détérminer des teneurs en plutonium satisfaisant les critères de sûreté et avons quantifié la production d'uranium-233 en fin de combustion. Ceci nous permet de considèrer et de valider différents scénarios de transition du parc français vers un parc de réacteurs isogénérateurs utilisant le cycle du thorium, où l'U-233, aura été produit dans des réacteurs à eau sous pression utilisant du MOX thorié
    corecore