508 research outputs found

    μ3-Carbonato-κ3 O:O′:O′′-tris­{(η6-ben­zene)[(R)-1-(1-amino­ethyl)naphthyl-κ2 C 2,N]ruthenium(II)} hexa­fluorido­phosphate dichloro­methane solvate

    Get PDF
    The title compound, [Ru3(C12H12N)3(CO3)(C6H6)3]PF6·CH2Cl2, was obtained unintentionally as the product of an attempted deprotonation of the monomeric parent ruthenium complex [Ru(C12H12N)(C6H6)(C2H3N)]PF6. The carbonate ligand bridges three half-sandwich cyclo­ruthenated fragments, each of them exhibiting a pseudo-tetra­hedral geometry. The configuration of the Ru atoms is S. The naphthyl groups of the enanti­opure cyclo­ruthenated benzylic amine ligands point in the same direction, adopting a propeller shape

    Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    Get PDF
    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with ee’s up to 98%. Iridacycles, which are prepared in similar fashion from [IrCp*Cl2]2 are excellent catalysts for the racemisation of secondary alcohols and chlorohydrins at room temperature. This allowed the development of a new dynamic kinetic resolution of chlorohydrins to the enantiopure epoxides in up to 90% yield and 98% enantiomeric excess (ee) using a mutant of the enzyme Haloalcohol dehalogenase C and an iridacycle as racemisation catalyst.

    Intercomparison Exercise for Heavy Metals in PM10

    Get PDF
    The Joint Research Centre (JRC) has carried out an Intercomparison Exercise (IE) for the determination of heavy metals in particulate matter (PM10). The IE focussed on Lead (Pb), Arsenic (As), Nickel (Ni) and Cadmium (Cd), the heavy metals regulated by the 1st and 4th Daughter Directives for Air Pollution. Copper (Cu), Chromium (Cr) and Zinc (Zn), the elements included in the EMEP programme together with Aluminium (Al), Cobalt (Co), Iron (Fe), Manganese (Mn) and Vanadium (V) were also tested. Fourteen Laboratories, generally members of the Network of Air Quality Reference Laboratories (AQUILA), participated in the IE. The participants mainly used microwave digestion with nitric acid and hydrogen peroxide and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Graphite Furnace Atomic Absorption Spectrometry (GF-AAS) for analysis as recommended in the reference method (EN 14902). However, a few participants used other methods: Energy Dispersive X-ray Fluorescence (EDXRF), Atomic Emission Spectrometry (ICP-AES) and Voltammetry for analysis and vaporisation on hot plate before microwave digestion, Soxhlet extraction, high pressure or cold Hydrogen Fluoride methods for digestion. Each participant received 5 samples to be analysed: a liquid sample prepared by dilution of a Certified Reference Material (CRM), a solution of a dust CRM sample digested by the JRC13F, a sub-sample of a dust CRM that each participating laboratory had to digest and analyse, a solution prepared by JRC after digestion of an exposed filter and a pair of filters (one blank filter and one exposed filter) to be digested and analysed by each participant. For 89 % of all types of samples, the DQOs of the 1st and 4th European Directives (uncertainty of 25 % for Pb and 40 % for As, Cd and Ni) were met. All together, this is a very good score. The best results were obtained for the liquid CRM, dust CRM digested by JRC, dust CRM and filter digested by JRC with 92, 90, 96 and 93 % of DQOs being met, respectively. It was found that the DQOs were not met if the difference of acidity between test samples and participant calibration standards was high. Conversely, only 76 % of DQOs were met for the filter to be digested by each participant with (about 85 % for Cd and Ni, 73/64 % for Pb and As, the most difficult element to determine). The worst results were associated with special events: explosion in microwave oven during digestion for two participants, a wrong dilution factor used by one participant and a huge contamination in the blank filter for another participant. Among the two explosions, one of them was probably the effect of a lack of temperature control in the digestion vessel. For the other explosion, the microwave digestion and the digestion program advised by EN 14902 is to be questioned. Moreover, satisfactory results were obtained using Soxhlet extraction, high pressure method and cold Hydrogen Fluoride digestion methods which are not presented in EN 14902. The DQOs of As and Cd could not be met with EDXRF whose limit of detection was too high for these two elements and for Cd using Voltammetry which suffered a strong interference for this element. Regarding the methods of analysis, apart the points mentioned just before about EDXRF and Voltammetry, good results were observed using ICP-OES for Cd, Ni and Pb. A few discrepancies were also registered for GF-AAS and ICP-MS but they were created by the special events or acidity problem mentioned before. This shows that even though GF-AAS and ICP-MS are found suitable, the implementation by each participant may be responsible for important mistakes.JRC.H.4-Transport and air qualit

    Determinants of persistence in hypertensive patients treated with irbesartan: results of a postmarketing survey

    Get PDF
    BACKGROUND: Persistence is a key factor for long-term blood pressure control, which is of high prognostic importance for patients at increased cardiovascular risk. Here we present the results of a post-marketing survey including 4769 hypertensive patients treated with irbesartan in 886 general practices in Switzerland. The goal of this survey was to evaluate the tolerance and the blood pressure lowering effect of irbesartan as well as the factors affecting persistence in a large unselected population. METHODS: Prospective observational survey conducted in general practices in all regions of Switzerland. Previously untreated and uncontrolled pre-treated patients were started with a daily dose of 150 mg irbesartan and followed up to 6 months. RESULTS: After an observation time slightly exceeding 4 months, the average reduction in systolic and diastolic blood pressure was 20 (95% confidence interval (CI) -19.6 to -20.7 mmHg) and 12 mmHg (95% CI -11.4 to -12.1 mmHg), respectively. At this time, 26% of patients had a blood pressure < 140/90 mmHg and 60% had a diastolic blood pressure < 90 mmHg. The drug was well tolerated with an incidence of adverse events (dizziness, headaches,...) of 8.0%. In this survey more than 80% of patients were still on irbesartan at 4 month. The most important factors predictive of persistence were the tolerability profile and the ability to achieve a blood pressure target ≤ 140/90 mmHg before visit 2. Patients who switched from a fixed combination treatment tended to discontinue irbesartan more often whereas those who abandoned the previous treatment because of cough (a class side effect of ACE-Inhibitors) were more persistent with irbesartan. CONCLUSION: The results of this survey confirm that irbesartan is effective, well tolerated and well accepted by patients, as indicated by the good persistence. This post-marketing survey also emphasizes the importance of the tolerability profile and of achieving an early control of blood pressure as positive predictors of persistence
    corecore