111 research outputs found
A liquid helium target system for a measurement of parity violation in neutron spin rotation
A liquid helium target system was designed and built to perform a precision
measurement of the parity-violating neutron spin rotation in helium due to the
nucleon-nucleon weak interaction. The measurement employed a beam of low energy
neutrons that passed through a crossed neutron polarizer--analyzer pair with
the liquid helium target system located between them. Changes between the
target states generated differences in the beam transmission through the
polarizer--analyzer pair. The amount of parity-violating spin rotation was
determined from the measured beam transmission asymmetries. The expected
parity-violating spin rotation of order rad placed severe constraints
on the target design. In particular, isolation of the parity-odd component of
the spin rotation from a much larger background rotation caused by magnetic
fields required that a nonmagnetic cryostat and target system be supported
inside the magnetic shielding, while allowing nonmagnetic motion of liquid
helium between separated target chambers. This paper provides a detailed
description of the design, function, and performance of the liquid helium
target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised
to address reviewer comment
Unconventional phenomenology of a minimal two-Higgs-doublet model
Two-Higgs-doublet models (2HDM) are simple extensions of the Standard Model
(SM) where the scalar sector is enlarged by adding a weak doublet. As a result,
the Higgs potential depends in general on several free parameters which have to
be carefully chosen to give predictions consistent with the current precision
data. We consider a 2HDM invariant under a twisted custodial symmetry and
depending only on three extra parameters beyond the SM ones. This model
naturally features an inverted mass spectrum with a light pseudoscalar state
and a heavy SM-like Higgs boson. We thoroughly analyze direct and indirect
constraints and present a few unconventional though promising signatures at the
LHC.Comment: 37 pages, 20 figure
CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model
We investigate the associated production of neutralinos
accompanied by the neutralino
leptonic decay , taking into
account initial beam polarization and production-decay spin correlations in the
minimal supersymmetric standard model with general CP phases but without
generational mixing in the slepton sector. The stringent constraints from the
electron EDM on the CP phases are also included in the discussion. Initial beam
polarizations lead to three CP--even distributions and one CP--odd
distribution, which can be studied independently of the details of the
neutralino decays. We find that the production cross section and the branching
fractions of the leptonic neutralino decays are very sensitive to the CP
phases. In addition, the production--decay spin correlations lead to several
CP--even observables such as lepton invariant mass distribution, and lepton
angular distribution, and one interesting T--odd (CP--odd) triple product of
the initial electron momentum and two final lepton momenta, the size of which
might be large enough to be measured at the high--luminosity future
electron--positron collider or can play a complementary role in constraining
the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure
Improved survival for adolescents and young adults with Hodgkin lymphoma and continued high survival for children in the Netherlands: a population-based study during 1990â2015
Population-based studies that assess long-term patterns of incidence, major aspects of treatment and survival are virtually lacking for Hodgkin lymphoma (HL) at a younger age. This study assessed the progress made for young patients with HL (<25Â years at diagnosis) in the Netherlands during 1990â2015. Patient and tumour characteristics were extracted from the population-based Netherlands Cancer Registry. Time trends in incidence and mortality rates were evaluated with average annual percentage change (AAPC) analyses. Stage at diagnosis, i
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
Heritability estimates for 361 blood metabolites across 40 genome-wide association studies
Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
- âŠ