8 research outputs found

    MO38-2 Metallothionein-3: Potential therapeutic target for sorafenib resistance in hepatocellular carcinoma

    Get PDF
    1 p. JSMO2021 Virtual Congress. 2021 the Japanese Society of Medical Oncology Annual Meeting. February 18 - 21, 2021Background: Metallothionein-3 (M-3) has poorly characterized functions in hepatocellular carcinoma (HCC). HCC is a significant health problem. Globally is the second most common cause of cancer-associated death. Sorafenib was originally identified as an inhibitor of multiple oncogenic kinases and remains the only approved systemic therapy for advanced HCC. However, acquired resistance to sorafenib has been found in HCC patients, which results in poor prognosis. Overexpression of MT-3 decreased the sensitivity of HCC cells to sorefenib. Here, we investigated the impact of MT-3 up-regulation in HCC cells and the mechanisms underlying the sorafenib-resistance.Methods: To increase the expression of MT-3 HCC cells were transiently transfected with a plasmid containing MT-3 gene or with empty vector. The cDNA microarrays were accomplished using the ElectraSenseTM Reader. MS analysis was performed using a Q-Exactive MS. We used chick chorioallantoic membrane assay as in vivo model.Results: A cDNA profiling revealed that sorafenib resistance has a specific transcriptomic signature involving genes responsible for ion transport, trafficking and DNA repair. Also, The MS analysis data strongly suggest that resistance HCC cells acquired a complex regulatory network that significantly affects the ability of HCC cells to remove the ROS and activation of glycolysis. We provide the first evidence that up-regulation of MT3 resulted in increased dissociation, invasion, and intravasation from the primary tumours to the veins. In addition, MT3 profoundly impacted blood migration of Nbl cells and their extravasation to chicken organs.Conclusion: From a perspective of future utilization of our data, we anticipate that several identified genes and proteins could serve as prognostic biomarkers of outcome of sorafenib therapy. The increased expression of MT-3 within tumour mass should inform about worse prognosis and also decreased efficiency of sorafenib-based chemotherapy in HCC.Peer reviewe

    Synthesis and characterization of TiO2 nanoparticles combined with geraniol and their synergistic antibacterial activity

    No full text
    Abstract Background The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). Results The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. Conclusions Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation

    Komplexní mechanismus cytotoxicity svazků anodických samo-organizovaných TiO2 nanotrubic

    No full text
    The present study reports on a comprehensive investigation of mechanisms of in vitro cytotoxicity of high aspect ratio (HAR) bundles formed from anodic TiO2 nanotube (TNT) layers. Comparative cytotoxicity studies were performed using two types of HAR TNTs (diameter of similar to 110 nm), differing in initial thickness of the nanotubular layer (similar to 35 mu m for TNTs-1 vs. similar to 10 mu m for TNTs-2). Using two types of epithelial cell lines (MDA-MB-231, HEK-293), it was found that nanotoxicity is highly cell-type dependent and plausibly associates with higher membrane fluidity and decreased rigidity of cancer cells enabling penetration of TNTs to the cell membrane towards disruption of membrane integrity and reorganization of cytoskeletal network. Upon penetration, TNTs dysregulated redox homeostasis followed by DNA fragmentation and apoptotic/necrotic cell death. Both TNTs exhibited haemolytic activity and rapidly activated polarization of RAW 264.7 macrophages. Throughout the whole study, TNTs-2 possessing a lower aspect ratio manifested significantly higher cytotoxic effects. Taken together, this is the first report comprehensively investigating the mechanisms underlying the nanotoxicity of bundles formed from self-organised 1-D anodic TNT layers. Except for description of nanotoxicity of industrially-interesting nanomaterials, the delineation of the nanotoxicity paradigm in cancer cells could serve as solid basis for future efforts in rational engineering of TNTs towards selective anticancer nanomedicine.Tato studie představuje komplexní výzkum mechanizmu in vitro cytotoxicity svazků anodických vrstev TiO2 nanotrubic (TNT). Komparativní studie byly realizována s dvěma typy svazků se stejným nominálním průreme trubic (cca 110 nm), ale rozdílnou tloušťkou původních vrstev trubic: 35 mikrometrů pro TNTs-1 a 10 mikrometrů pro TNTs-2. S využitím dvou buněčných linií (MDA-MB-231, HEK-293) bylo zjištěno, že nanotoxicita je velmi závislá na použité bunečné linii a je pravděpodobně závislá od difuzních vlastností rakovinových buněčných membrán. Svazkům TNT je umožněno penetrovat tyto membrány směrem k porušení jejich celistvosti a reorganizaci cytoskeletálních sítí. Oba typy TNT svazků vykazují hemolytickou aktivitu a rapidně aktivují polarizaci RAW 264.7 makrofágů. V celé studii vykazovali svazky TNTs-2, které mají nižší poměr délky trubic vůči jejich průměru, o něco vyšší cytotoxický efekt. Toto je první report, který se uceleně zabývá mechanismem nanotoxicity svazků nanotrubic TiO2. Kromě popisu toxicity těchto aplikačně velmi zajímavých nanomateriálů, náčrt paradigmat toxicity rakovinových buněk by mohl sloužit jako pevná základna pro další optimalizaci využití TNT vrstev pro selektivní protirakovinovou nanomedicínu

    DataSheet_1_Platinum-based drug-induced depletion of amino acids in the kidneys and liver.docx

    No full text
    Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.</p

    Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine

    No full text
    Surface functionalisations substantially influence the performance of drug delivery vehicles by improving their biocompatibility, selectivity and circulation in bloodstream. Herein, we present the study of in vitro and in vivo behaviour of a highly potent cytostatic alkaloid ellipticine (Elli) encapsulated in internal cavity of ferritin (FRT)-based nanocarrier (hereinafter referred to as FRTElli). In addition, FRTElli surface was functionalised with three different molecular coatings: two types of protective PAS peptides (10- or 20-residues lengths) with sequences comprising amino acids proline (P), alanine (A) and serine (S) (to form PAS-10-FRTElli or PAS-20-FRTElli, respectively), or polyethylene glycol (PEG-FRTElli). All three surface modifications of FRT disposed sufficient encapsulation efficiency of Elli with no premature cumulative release of cargo. Noteworthy, all tested surface modifications displayed beneficial effects on the in vitro biocompatibility. PAS-10-FRTElli exhibited markedly reduced uptake by macrophages compared to PAS-20-FRTElli, PEG-FRTElli or unmodified FRTElli. The exceptional properties of PAS-10-FRTElli were validated by an array of in vitro analyses including formation of protein corona, uptake efficiency or screenings of selectivity of cytotoxicity. In murine preclinical model bearing triple-negative breast cancer (MDA-MB-231) xenograft, compared to free Elli or FRTElli, PAS-10-FRTElli displayed enhanced accumulation of Elli within tumour tissue, while hampering the uptake of Elli into off-target tissues. Noteworthy, PAS-10-FRTElli led to decreased in vivo complement (C3) activation and protein corona formation. Taken together, presented in vivo results indicate that PAS-10-FRTElli represents a promising stealth platform for translation into clinical settings.info:eu-repo/semantics/publishedVersio
    corecore