87 research outputs found

    A minimal region of the HSP90AB1 promoter is suitable for ubiquitous expression in different somatic tissues with applicability for gene therapy

    Get PDF
    Huntington’s disease (HD) is a multi-tissue failure disorder for which there is no cure. We have previously shown an effective therapeutic approach limited mainly to the central nervous system, based on a synthetic zinc finger (ZF) transcription repressor gene therapy, but it would be important to target other tissues as well. In this study, we identify a novel minimal HSP90AB1 promoter region that can efficiently control expression not only in the CNS but also in other affected HD tissues. This promoter-enhancer is effective in driving expression of ZF therapeutic molecules in both HD skeletal muscles and the heart, in the symptomatic R6/1 mouse model. Moreover, for the first time we show that ZF molecules repressing mutant HTT reverse transcriptional pathological remodelling in HD hearts. We conclude that this HSP90AB1 minimal promoter may be used to target multiple HD organs with therapeutic genes. The new promoter has the potential to be added to the portfolio of gene therapy promoters, for use where ubiquitous expression is needed

    SAHA Decreases HDAC 2 and 4 Levels In Vivo and Improves Molecular Phenotypes in the R6/2 Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a progressive neurological disorder for which there are no disease-modifying treatments. Transcriptional dysregulation is a major molecular feature of HD, which significantly contributes to disease progression. Therefore, the development of histone deacetylase (HDAC) inhibitors as therapeutics for HD has been energetically pursued. Suberoylanilide hydroxamic acid (SAHA) – a class I HDAC as well an HDAC6 inhibitor, improved motor impairment in the R6/2 mouse model of HD. Recently it has been found that SAHA can also promote the degradation of HDAC4 and possibly other class IIa HDACs at the protein level in various cancer cell lines. To elucidate whether SAHA is a potent modifier of HDAC protein levels in vivo, we performed two independent mouse trials. Both WT and R6/2 mice were chronically treated with SAHA and vehicle. We found that prolonged SAHA treatment causes the degradation of HDAC4 in cortex and brain stem, but not hippocampus, without affecting its transcript levels in vivo. Similarly, SAHA also decreased HDAC2 levels without modifying the expression of its mRNA. Consistent with our previous data, SAHA treatment diminishes Hdac7 transcript levels in both wild type and R6/2 brains and unexpectedly was found to decrease Hdac11 in R6/2 but not wild type. We investigated the effects of SAHA administration on well-characterised molecular readouts of disease progression. We found that SAHA reduces SDS-insoluble aggregate load in the cortex and brain stem but not in the hippocampus of the R6/2 brains, and that this was accompanied by restoration of Bdnf cortical transcript levels

    Genetic Knock-Down of HDAC7 Does Not Ameliorate Disease Pathogenesis in the R6/2 Mouse Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an inherited, progressive neurological disorder caused by a CAG/polyglutamine repeat expansion, for which there is no effective disease modifying therapy. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression. Administration of histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) have consistently shown therapeutic potential in models of HD, at least partly through increasing the association of acetylated histones with down-regulated genes and by correcting mRNA abnormalities. The HDAC enzyme through which SAHA mediates its beneficial effects in the R6/2 mouse model of HD is not known. Therefore, we have embarked on a series of genetic studies to uncover the HDAC target that is relevant to therapeutic development for HD. HDAC7 is of interest in this context because SAHA has been shown to decrease HDAC7 expression in cell culture systems in addition to inhibiting enzyme activity. After confirming that expression levels of Hdac7 are decreased in the brains of wild type and R6/2 mice after SAHA administration, we performed a genetic cross to determine whether genetic reduction of Hdac7 would alleviate phenotypes in the R6/2 mice. We found no improvement in a number of physiological or behavioral phenotypes. Similarly, the dysregulated expression levels of a number of genes of interest were not improved suggesting that reduction in Hdac7 does not alleviate the R6/2 HD-related transcriptional dysregulation. Therefore, we conclude that the beneficial effects of HDAC inhibitors are not predominantly mediated through the inhibition of HDAC7

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Neuro-Cardio Mechanisms in Huntington’s Disease and Other Neurodegenerative Disorders

    No full text
    Although Huntington’s disease is generally considered to be a neurological disorder, there is mounting evidence that heart malfunction plays an important role in disease progression. This is perhaps not unexpected since both cardiovascular and nervous systems are strongly connected – both developmentally and subsequently in health and disease. This connection occurs through a system of central and peripheral neurons that control cardiovascular performance, while in return the cardiovascular system works as a sensor for the nervous system to react to physiological events. Hence, given their permanent interconnectivity, any pathological events occurring in one system might affect the second. In addition, some pathological signals from Huntington’s disease might occur simultaneously in both the cardiovascular and nervous systems, since mutant huntingtin protein is expressed in both. Here we aim to review the source of HD-related cardiomyopathy in the light of recently published studies, and to identify similarities between HD-related cardiomyopathy and other neuro-cardio disorders

    DataSheet1_A minimal region of the HSP90AB1 promoter is suitable for ubiquitous expression in different somatic tissues with applicability for gene therapy.PDF

    No full text
    Huntington’s disease (HD) is a multi-tissue failure disorder for which there is no cure. We have previously shown an effective therapeutic approach limited mainly to the central nervous system, based on a synthetic zinc finger (ZF) transcription repressor gene therapy, but it would be important to target other tissues as well. In this study, we identify a novel minimal HSP90AB1 promoter region that can efficiently control expression not only in the CNS but also in other affected HD tissues. This promoter-enhancer is effective in driving expression of ZF therapeutic molecules in both HD skeletal muscles and the heart, in the symptomatic R6/1 mouse model. Moreover, for the first time we show that ZF molecules repressing mutant HTT reverse transcriptional pathological remodelling in HD hearts. We conclude that this HSP90AB1 minimal promoter may be used to target multiple HD organs with therapeutic genes. The new promoter has the potential to be added to the portfolio of gene therapy promoters, for use where ubiquitous expression is needed.</p

    VITO-1 is an essential cofactor of TEF1-dependent muscle-specific gene regulation

    No full text
    The expression of several muscle-specific genes is partially or completely regulated by MCAT elements, which bind members of the TEF family of transcription factors. TEF1 itself is unable to activate reporter plasmids bearing TEF1-binding sites, suggesting that additional bridging or co-activating factors are necessary to allow interaction of TEF1 with the transcriptional machinery. In addition, none of the known TEF genes are exclusively expressed in the cardiac or skeletal muscle lineage to account for the muscle-specific expression of MCAT-dependent genes. Here we describe that VITO-1, a new SID (scalloped interaction domain)-containing protein, binds to TEF1 in vitro and strongly stimulates transcription of a MCAT reporter plasmid together with TEF-1. Since VITO-1 is predominantly expressed in the skeletal muscle lineage, it might serve as an essential transcriptional intermediary factor to promote muscle-specific expression via MCAT cis-regulatory elements. Although VITO-1 alone is not sufficient to initiate myogenic conversion of 10T1/2 fibroblastic cells, it enhanced MyoD-mediated myogenic conversion. In addition, interference with VITO-1 expression by siRNA attenuated differentiation of C2C12 muscle cells and MyoD-dependent myogenesis in 10T1/2 cells. We conclude that VITO-1 is a crucial new cofactor of the muscle regulatory programme

    Chronic administration of doxorubicin leads to a significant transcriptional deregulation of <i>Hdacs</i>.

    No full text
    <p>(A) Transcript levels of <i>Hdac4</i>, <i>Hdac5</i>, <i>Hdac6</i>, <i>Hdac7</i>, <i>Hdac10</i> and <i>Hdac11</i> were increased, while <i>Hdac2</i> mRNA was significantly reduced, in the hearts of WT mice treated with doxorubicin. All Taqman qPCR values were normalized to the geometric mean of three housekeeping genes: <i>Actb</i>, <i>Cyc1</i> and <i>Gapdh</i>. Error bars are ±SEM (n = 6). One-way ANOVA with Bonferroni <i>post-hoc</i> test: *<i>p</i> < 0.05, **<i>p</i> < 0.01; ***<i>p</i> < 0.001. (B) Representative western immunoblots of 20 ÎŒg of heart homogenates from WT doxorubicin and vehicle-treated mice (PBS). Protein levels of HDAC2 are significantly down-regulated; HDAC3 remains unchanged; HDAC4 and HDAC5 are significantly up-regulated. Relative expression levels of HDACs were obtained by normalisation to ATP5b in densitometry; values are mean ± SEM (<i>n</i> = 6). Student’s <i>t</i> test: *<i>p</i> < 0.05, **<i>p</i> < 0.01, ***<i>p</i> < 0.001.</p

    Gross cardiac morphology of hearts treated with doxorubicin.

    No full text
    <p>Representative vinculin staining (green) in WT (PBS) mice (A) and WT doxorubicin (B). Nuclei (red) were visualized with draq5. Replacement fibrosis was detected in the doxorubicin treated hearts (D) but not in vehicle hearts (C), visualising with the anti-collagen VI antibody (green). Nuclei (blue) were visualised with DAPI, (E, F).</p
    • 

    corecore