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Huntington’s disease (HD) is a multi-tissue failure disorder for which there is no
cure. We have previously shown an effective therapeutic approach limited mainly
to the central nervous system, based on a synthetic zinc finger (ZF) transcription
repressor gene therapy, but it would be important to target other tissues as well. In
this study, we identify a novel minimal HSP90AB1 promoter region that can
efficiently control expression not only in the CNS but also in other affected HD
tissues. This promoter-enhancer is effective in driving expression of ZF
therapeutic molecules in both HD skeletal muscles and the heart, in the
symptomatic R6/1 mouse model. Moreover, for the first time we show that ZF
molecules repressing mutant HTT reverse transcriptional pathological
remodelling in HD hearts. We conclude that this HSP90AB1 minimal promoter
may be used to target multiple HD organs with therapeutic genes. The new
promoter has the potential to be added to the portfolio of gene therapy
promoters, for use where ubiquitous expression is needed.
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Introduction

The zinc finger transcription factor (ZF-TF) platform is a broadly-applicable technology
to silence lethal mutations at their source-at the DNA level Figure 1. We have previously
shown its application in Huntington’s disease (HD), where a ZF synthetic construct
effectively and selectively repressed the expanded CAG sequence within the mutant
Huntingin allele, which is the source of HD (Garriga-Canut et al., 2012; Agustin-Pavon
et al., 2016). Unlike CRISPR nuclease approaches, synthetic TFs are inherently safer because
they do not cut DNA, which leads to permanent effects (Papworth et al., 2003; Reynolds
et al., 2003; Tan et al., 2003). Furthermore, non-replicating, non-integrating vectors such as
recombinant adeno-associated viruses (rAAVs) have now improved efficiency and safety, as
well as providing clinically practical delivery routes, including intravenous injection (Au
et al., 2021).

Huntington’s disease is a fatal neurodegenerative disorder for which there is
currently no effective therapy (Zielonka et al., 2015). It is a genetic disorder caused
by an abnormal CAG expansion that is translated into a polyQ track within the
Huntingtin protein, leading to a decline in movement, cognitive and psychiatric
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abilities, due to the central nervous system malfunction (Walker,
2007). HD has been recognised as a multi-system disorder
(Mielcarek, 2015) due to mounting evidence of peripheral
tissue pathologies and a high prevalence of non-psychiatric
comorbidities in HD patients (Zielonka et al., 2020). These
pathologies have been also widely described in a number HD
mouse models with an apparent malfunction of skeletal and
cardiac muscles (Critchley et al., 2018; Mielcarek and Isalan,
2021a). HD-related cardiomyopathy has been shown to be
manifested by a pathological remodelling of foetal gene
transcripts (Mielcarek et al., 2014a) and impaired metabolism
of nucleotides at the molecular level (Toczek et al., 2016a; Toczek
et al., 2016b). There is also a significant malfunction of HD
skeletal muscles that has been shown to be characterised by a
progressive impairment of the contractile characteristics of the
hind limb muscles, accompanied by a significant loss of motor
units (Mielcarek et al., 2015). Moreover, there is a significant
deterioration in energy metabolism, along with a decreased
oxidation activity (Zielonka et al., 2014a; Mielcarek et al.,
2015), that has been linked to an altered purine metabolism
transcriptome (Mielcarek et al., 2017). Hence, one may conclude
that an effective therapy for HD patients should not be only
restricted to the central nervous system.

Advances in synthetic gene regulation show promise in
efficient delivery of artificial transcription factors (TFs) on
recombinant AAV viruses, by direct injection. Our previous
study showed that an endogenous promoter, based on a
neuronal specific enolase (NSE) promoter-enhancer, was
sufficient for stable long-term expression of a synthetic ZF
targeting a mutant (but not wild type) Htt allele (Agustin-
Pavon et al., 2016). However, because of the neuronal nature
of the promoter, therapeutic expression was restricted to the
central nervous system only. In the current study, we aimed to
define a novel minimal promoter that would be sufficient to drive
long-term expression of synthetic ZFs, up to 6 months, in the
various cell types (tissues) that are mainly affected in HD, like
skeletal muscles and heart. Importantly, this study was also
driven by the idea of testing different delivery routes that
are clinically practical (e.g., intrathecal, intramuscular,
intravenous), allowing the realistic prospect of future
translation into humans.

Results

We have previously shown that synthetic ZF transcription
factors efficiently silenced mutant HTT transcripts in either
specific brain regions (Garriga-Canut et al., 2012; Agustin-
Pavon et al., 2016), or in the whole brain (Agustin-Pavon
et al., 2016), in various HD mouse models. In these earlier
studies, we used two types of promoters to control the ZF
expression. First, we used an exogenous CMV-enhanced CAG
promoter that likely became methylated and inactivated after
several weeks (Garriga-Canut et al., 2012). Second, we switched to
an endogenous NSE (Neuronal Specific Enolase) promoter, which
drove ZF expression in the CNS for at least 6 months (Agustin-
Pavon et al., 2016). HD has been recognised as a multi-system
disorder, affecting virtually all tissues (Mielcarek, 2015; Mielcarek
and Isalan, 2021a) (due to ubiquitous expression of HTT
transcripts (Li et al., 1993; Saudou and Humbert, 2016)).
Therefore, here we aimed to characterise a new endogenous
promoter with ubiquitous tissue expression, while also
controlling expression of the therapeutic ZF in important
tissues that are pathologically affected by mutant HTT,
including the CNS, skeletal muscles and the heart.

To find a candidate ubiquitous endogenous promoter, we mined
new endogenous promoters-enhancers in the literature. For
instance, a recent RNA-seq study explored gene expression in the
striatum and cortex, in WT and R6/2 mice, and found many genes
consistently-upregulated in all four sample types (Vashishtha et al.,
2013). The promoter-enhancer regions from some of these genes
might potentially be good candidates to drive therapeutic gene
expression. However, the functional promoter-enhancer regions
remained to be characterised.

We started with a preliminary analysis in silico for alternative
promoter candidates and found 8 that are in the top 20 most-
expressed genes in all conditions in Vashishtha et al. (Vashishtha
et al., 2013) (conditions: cortex and striatum, 8 and 12 week-old
mice, R6/2 and WT; Supplementary Table S3 therein). In order of
expression, these highly-expressed genes are: Tmsb4x (NCBI Gene
ID: 19241), Snap25 (20614), Fth1 (14319), Cst3 (13010), Cpe
(12876), Hsp90ab1 (15516), Calm1 (12313) and Rtn1 (104001).

Out of this list, we selected the ubiquitous gene promoter
Hsp90ab1 (hereafter abbreviated as HSP90) because the gene

FIGURE 1
Schematic overview of the zinc finger transcription factor (ZF-TF) platform. We have previously designed zinc fingers to selectively target expanded
CAG-repeats in Huntington’s disease (Garriga-Canut et al., 2012; Agustin-Pavon et al., 2016). The ZF-TFs are delivered as DNA in adeno-associated
viruses (AAVs) and can be delivered by injection via various routes, including intrathecal and intravenous. The zinc fingers are expressed inside cells and
bind their DNA targets to repress transcription via KRAB repressor domains fused to the zinc fingers.
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product is reported as being strongly expressed in a large variety of
cell types in various organisms (see NCBI Gene ID: 15516). This
gene promoter belongs to heat shock protein HSP90: the Hsp90beta
isoform is constitutively expressed, whereas the Hsp90alpha
isoforms is expressed under stress. As the promoter/enhancer
had not been characterised, we set out to test a potential region
in the mouse promoter (NCBI 15516 NC_000083.6). This region
shares homology with the counterpart human promoter. Because we
were constrained by the 1810bp packaging limit of our AAV-ZF
vector, we selected a region of 1.7k upstream of the TSS, plus 95bp of
the transcript, while remaining under the 1810bp AAV packaging
limit. Flanking NheI sites were added for cloning into AAV vector
(See Supplementary Figure S1). We therefore selected this promoter
for vectorisation in AAV for studies of expression in mice.

In the first set of experiments, we validated the expression of our
previous anti-mutant Huntingtin zinc finger, mZF-KRAB (Agustin-
Pavon et al., 2016), under the control of the HSP90 promoter, in the
CNS of the R6/1 mouse model. We used bilateral intraventricular
injections of AAV2/9 carryingmZF-KRABunder theHSP90 promoter,
in neonatal pups of either wild type or R6/1 mice, as previously

described (Agustin-Pavon et al., 2016). We monitored expression of
mZF-KRAB transcripts at several time-points: 3, 6, 12 and 24 weeks
post-single injection into the neonatal mice. We found consistent
expression of the mZF-KRAB mRNA at 3, 6 and 12 weeks post
single injection, followed by a drop at 24 weeks, both in the wild
type and R6/1 cohort of mice Figure 2A. As expected, the mZF-KRAB
significantly repressed mutant Htt transcript levels by approximately
20% at 3 weeks, 60% at 6 weeks, 40% at 12 weeks and 20% at 24 weeks
post single injection Figure 2B. Importantly, the wild-type alleles ofHtt
remained unchanged at all time-points in both wild-type and R6/
1 mice, indicating mutant allele selectivity Figure 2C. We normalised
expression of mZF-KRAB, mutantHtt and wild-typeHtt transcripts to
a previously selected set of housekeeping genes (Agustin-Pavon et al.,
2016), Supplementary Figure S2.

Next, we examined the mZF-KRAB expression in the specific
brain regions 6 weeks post a single bilateral intraventricular injection
of AAV2/9-ZF into neonatal R6/1 mice. We found mZF-KRAB
mRNA to be detectable in all examined brain regions: Figure 3A)
cortex, Figure 3B) cerebellum, Figure 3C) striatum, Figure 3D)
hippocampus. Consequently, we detected a significant reduction

FIGURE 2
Long-term effects of bilateral intraventricular injection of AAV expressing mZF-KRAB zinc finger under the HSP90 promoter. (A) Zinc finger
expression over time. mZF-KRAB transcript levels from whole brains were assayed by qRT-PCR at 3, 6, 12, and 24 weeks after viral (or PBS control)
injections, in WT or R6/1 neonates. (B) Zinc finger repression of mutant Huntingtin in R6/1 mice. mut HTT (exon 1) expression levels in the whole brain
samples from the various treatments were compared to transcript levels in PBS controls, by qRT-PCR. (C) Verification of lack of cross-reactivity of
mZF-KRAB with short WT HTT alleles. WT HTT (exon 1) expression levels were quantified in the same treatment samples as above. All transcript levels
were normalized to three housekeeping genes (see Supplementary Figure S2). Error bars are S.E.M (n = 4). **p < 0.01, ***p < 0.001, n.s. = not significant.
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of mutantHtt transcripts but not wild-typeHtt on average by 60% in
all studied brain regions Figure 3. That indicates that the ZF
repressed the mutant but not wild-type allele, as expected, under

expression with the HSP90 promoter. All transcript levels were
normalised to a previously selected (Mielcarek et al., 2013a) panel of
brain region specific housekeeping genes Supplementary Figure S3.

FIGURE 3
Effects of bilateral intraventricular injection of AAV expressing mZF-KRAB under the HSP90 promoter in specific brain regions 6 weeks post an
injection. Unchanged expression WT HTT transcripts, as well the repression of mutant Huntingtin mut-Exon1, by targeted zinc finger expression. mZF-
KRAB (ZFP) transcript levels are from dissected brain regions of the R6/1 mice, treated with either AAV2/9 (carrying mZF-KRAB under the
HSP90 promoter) or PBS (control). The specific brain regions are: (A) cortex, (B) cerebellum, (C) striatum, (D) hippocampus. All transcript levels were
normalized to three housekeeping genes see Supplementary Figure S3. Error bars are S.E.M (n = 4). ***p < 0.001.
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We next studied whether the HSP90 promoter can efficiently
drive expression of the mZF-KRAB mRNA in the CNS of
symptomatic (3 months of age) R6/1 mice. For this purpose, we
changed delivery route and we injected AAV2/9, carrying mZF-
KRAB under the HSP90 promoter, into the lower lumbar part of the
spine. We found mZF-KRABmRNA in the whole brain of wild-type
and R6/1 mice 6 weeks post a single intrathecal injection Figure 4B.
As a result of mZF-KRAB expression, we detected a significant
reduction of mutant Htt transcripts (approximately 40%) in whole
brains of R6/1 mice Figure 4A, while wild-typeHttmRNA remained
unchanged in both R6/1 mice and their wild-type littermates. This
indicates that the zinc finger maintained allele-selective repression
under this new promoter and delivery route. The transcripts were
normalised to a specific panel of housekeeping genes Figure 4C.
Overall, we concluded that our novel minimal HSP90 promoter
efficiently drives expression of the therapeutic mZF-KRAB in the
R6/1 mouse model during both early postnatal life, as well in the
fully symptomatic mice.

Next, we validated the expression of the mZF-KRAB mRNA
driven by HSP90 promoter in HD skeletal muscles. For this purpose,
we injected AAV2/9 carrying mZF-KRAB under the HSP90 control
directly into tibialis anterior (TA) muscles of 3-month old R6/1 mice
(early-symptomatic stage) and their wild-type littermates. In order

to verify the mZF-KRAB mRNA expression, we used two cohorts of
mice and analysed those tissues at 3 weeks Figures 5A–D and at
6 weeks Figures 5E–H post single injection. We found mZF-KRAB
transcripts to be expressed at both time-points (three and 6 weeks
post single injection) Figures 5B,F. Already at 3 weeks post injection,
the mutant Htt transcripts were significantly reduced by 60% as a
consequence of the mZF-KRAB expression Figure 5A. Similar levels
of mutant Htt transcript reduction were detected at 6 weeks post
single injection Figure 5E. There was no reduction of wild-type Htt
mRNA at both time-points, indicating allele-selective repression
Figures 5A,E. We also monitored for any potential inflammatory
response to the mZF-KRAB in TA muscles by quantification of Tnf-
alpha (Tumor Necrosis Factor alpha) transcript levels. We did not
detect any increase in the Tnf-alpha mRNA levels in TA muscles
expressing mZF-KRAB at both time points Figures 5C,G. All
transcript levels were normalised to a set of previously identified
housekeeping genes Figures 5D,H. Our data indicate that the
HSP90 promoter efficiently drives expression of the mZF-KRAB
therapeutic molecule in the TA muscles of both wild-type and R6/
1 mice.

HD-related cardiomyopathy has been described as a relatively
late pathological event in HDmouse models (Mielcarek et al., 2014a;
Zielonka et al., 2014b). Hence, we validated the activity of the

FIGURE 4
Effects of intrathecal injection of AAV expressing mZF-KRAB under the HSP90 promoter. Three month old wild-type and R6/1 mice were treated
either with PBS or with AAV2/9 carrying mZF-KRAB under the HSP90 promoter. (A) Unchanged expression WT HTT transcripts as well the repression of
mutant Huntingtin mut-Exon1 by the zinc finger (ZFP) expression. mZF-KRAB transcript levels are from whole brains of the WT and R6/1 mice. (B)mZF-
KRAB transcript levels in the whole brain of wild-type and R6/1 mice. All transcript levels were normalized to three housekeeping genes: (C) Raw
crossing threshold (Ct) data for a panel of housekeeping genes. The following gene transcripts were used: Ubc (Ubiquitin C, 22190), Atp5b (ATP synthase
subunit, 11947) and Rpl13a (Ribosomal protein L13a, 22121). Error bars are ±SEM (n = 6). **p < 0.01, ***p < 0.001.
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FIGURE 5
Effects of intramuscular injection of AAV expressing mZF-KRAB under the HSP90 promoter. Tibialis anterior (TA) muscles of the 3 month old wild-
type and R6/1 mice were injected with either PBS or with AAV2/9, carrying mZF-KRAB under the HSP90 promoter, and the tissue was harvested either
3 weeks (A–D) or 6 weeks (E–H) post single injection. The unchanged expression of WT HTT transcripts as well the repression of mutant Huntingtinmut-
Exon1 in TA was apparent either 3 weeks (A) or 6 weeks (E) post single intramuscular injection. There was an apparent expression of the zinc finger
mZF-KRAB transcript in the TA muscles of WT and R6/1 mice at both time-points at 3 weeks (B) and 6 weeks (F). Tnf-alpha (Tumor necrosis factor alpha
transcript levels remained unchanged in the TA muscle expressing mZF-KRAB transcripts either 3 weeks (C) or 6 weeks (G) post single intramuscular
injection. All transcript levels were normalized to three housekeeping genes: Raw crossing threshold (Ct) data for a panel of housekeeping genes are
presented for the following gene transcripts: Ywhaz (Phospholipase A2, 22631), Atp5b (ATP synthase subunit, 11947) and Rpl13a (Ribosomal protein L13a,
22121). Error bars are ±SEM (n = 12). **p < 0.01, ***p < 0.001.
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therapeutic mZF-KRAB, driven by the HSP90 promoter in
symptomatic R6/1 mice, at 6 months of age. Heart tissue was
collected 6 weeks post a single intravenous (jugular vein)
injection with AAV2/9 carrying the mZF-KRAB under
HSP90 promoter control. The mZF-KRAB expression was clearly
detectable in hearts of R6/1 mice and their wild-type littermates
Figure 6B. Similarly to the CNS and skeletal muscles, mZF-KRAB
significantly reduced mutant Htt mRNA levels by 60%, while wild-
typeHtt transcripts remained unchanged Figure 6A. Since, there are

no previous reports regarding any therapeutic effects of silencing
mutant Htt in HD hearts, we performed a quantitative analysis of
previously established biomarkers linked to the HD related
cardiomyopathy in HD mouse models (Mielcarek et al., 2014a).
We found that Anf (atrial natriuretic factor) transcripts as well Bnp
(brain natriuretic protein) mRNAs were significantly downregulated
to the level detected in the wild-type mice Figure 6D. Similarly, the
expression level of two members of the four-and-a-half LIM family
Fhl1 and Fhl2 were significantly reversed to the level observed in

FIGURE 6
Effects of intrajugular vein injection of AAV expressingmZF-KRAB under HSP90 promoter in the HD heart. Transcript levels of wild typeHtt remained
unchanged while mutant exon-1Htt transcript levels were significantly reduced with zinc finger in the hearts of R6/1mice, in comparison to R6/1 injected
with PBS or wild-type mice injected with mZF-KRAB only (A). There was an apparent expression of the zinc finger mZF-KRAB transcript in the hearts of
both WT and R6/1 mice at 6 weeks post single injection (B). All transcript levels were normalized to three housekeeping genes (C): Raw crossing
threshold (Ct) data for a panel of housekeeping genes are presented for the following gene transcripts: Cyc1 (Cytochrome c-1, 66445), Atcb (Actin, beta,
cytoplasmic, 11461), Gapdh (Glyceraldehydes-3-phosphate dehydrogenase, 14433) (D). A number of biomarkers of the HD pathology in the heart have
been significantly reversed: Anf (atrial natriuretic factor), Bnp (brain natriuretic protein), members of the four-and-a-half LIM family Fhl1 and Fhl2,
S100A4S100 calcium binding protein A4). Error bars are ±SEM (n = 6). **p < 0.01, ***p < 0.001.
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wild-type mice Figure 6D. Finally, transcripts of S100A4
(S100 calcium binding protein A4) gene were reduced by 5-fold
in comparison to R6/1 mice injected with PBS as a control, although
the S100A4 mRNA level was still significantly higher than in wild-
type mice Figure 6D. All transcripts were normalised to a previously
established panel of housekeeping genes (Mielcarek et al., 2014a)
Figure 6C. Thus, our study shows that the HSP90 promoter can also
efficiently drive expression of mZF-KRAB therapeutics in the heart
tissue of HD mice.

Discussion

Gene locus silencing technology is based on the activity of
synthetic zinc finger (ZF) molecules that can act as selective
repressors to target virtually any gene sequence, resulting in a
broad therapeutic potential. Due to their relative small size, these
active ZF molecules can be delivered to various tissues and cells with
adeno associated viruses (AAV) and their expression can be
regulated by either tropism of the AAV or a cell-selective
promoter (Au et al., 2021). In the past, we have shown that these
synthetic ZF molecules can efficiently and very specifically target the
mutated form of the HTT gene, to significantly lower its expression
in the CNS of various HD mouse models, in an allele-selective
manner (Garriga-Canut et al., 2012; Agustin-Pavon et al., 2016).

Allele-selectivity by HTT-repressing ZFs is based on the
properties of zinc fingers that bind longer target sequences
preferentially because of avidity and co-operativity effects. For
illustration, distributions of mutant Huntingtin in human
populations have modal values of ~15 CAG repeats for wild-type
alleles and ~42 for the longer mutant alleles. Thus, the mutant target
provides many more overlapping opportunities for a ZFP to bind,
increasing the avidity of the interaction. Moreover, it is well-known
that zinc fingers unwind the DNA helix slightly when they bind (Shi
and Berg, 1996), facilitating binding reactions by subsequent zinc
fingers, both within a zinc finger chain and for multiple chains
binding to a longer target. The DNA unwinding is essential for the
proper alignment of the DNA-contacting amino acid residues and
the interaction sites on DNA. These effects lead to co-operativity in
zinc finger binding, leading to higher apparent affinity for longer
mutant DNA-repeat targets.

In vivo, specifically targetting mutant HTT in the CNS led to an
amelioration of a number of molecular and neurological phenotypes
in HD mouse models and became a valid therapeutic strategy for
Huntington’s disease (Garriga-Canut et al., 2012). However, the
therapeutic effect of ZF molecules was limited to relatively short
period of time, likely due to a methylation of the synthetic CAG
promoter (Zhou et al., 2014) that was used to drive expression of ZF
in vivo (Garriga-Canut et al., 2012). In fact by switching from the
CAG promoter to an endogenous Neuronal Specific Enolase
promoter (NSE), we very significantly improved expression of
therapeutic ZF molecules over time in the CNS of HD mouse
models and were able to observe the therapeutic effect up to
6 months post single injection (Agustin-Pavon et al., 2016).
Although HD is primarily recognised as a neurological disorder,
the last decade of extensive studies discovered a number of
pathological events occurring in the peripheral organs especially
in skeletal muscles (Zielonka et al., 2014a; Mielcarek and Isalan,

2015) and heart (Zielonka et al., 2014b; Critchley et al., 2018). In fact,
myostatin inhibition in HD skeletal muscles was by itself sufficient
to improve a number of molecular and physiological features in the
presence of ongoing CNS degeneration in an HD mouse model
(Mielcarek et al., 2014b). Hence, HD has been confirmed as a multi-
system disorder (Mielcarek, 2015; Mielcarek and Isalan, 2021a) and
it is becoming apparent that an efficient gene therapy for HD should
also be design to target mutant HTT very widely in a number of
peripheral tissues and organs. Thus, in this study, we aimed to
identify a novel minimal endogenous promoter-enhancer that can
efficiently drive expression of therapeutic ZF molecules in various
somatic HD tissues.

One of the prominent pathological features in HD is
transcriptional deregulation that has been described as an early
and progressive event (Hervas-Corpion et al., 2018). These
transcriptional changes have been characterised by a general
downregulation of a number of gene sets, likely by altering levels
of multiple gene expression regulators (Valor, 2015) or by
unbalanced epigenetic regulation (Francelle et al., 2017). Hence,
in order to identify a ubiquitous promoter that can be active during
lifetime of HD, we screened a number of transcription profiling
datasets to identify stably-expressed transcripts from early to end-
stage of the disease. This approach led us to identify a minimal
HSP90 promoter which we then validated for its ability to drive
expression of a therapeutic ZF in various somatic tissues, at both
pre-symptomatic and symptomatic stages in an HD mouse model.
Firstly, we found that ZF expression, controlled by our novel
HSP90 promoter, can last at least 6 months in the whole brain,
after a single injection into neonatal R6/1 mice, in a similar manner
to the previously characterised NSE promoter (Agustin-Pavon et al.,
2016).

Next, we used the more clinically-relevant intrathecal route to
deliver ZF molecules, under the control of HSP90 promoter, into the
CNS of symptomatic R6/1 mice.We found that 6 weeks after a single
injection, there was a significant reduction of mutant HTT mRNAs
in the whole brain, indicative of active ZF therapeutics being present.
Hence, we concluded that this new HSP90 promoter can efficiently
drive expression of ZF molecules even with intrathecal delivery into
symptomatic R6/1 mice.

Since malfunction of skeletal muscles is a major pathological
feature of HD (Mielcarek et al., 2015), we further assessed the ability
of HSP90 to drive ZF expression in the tibialis anterior, in
symptomatic R6/1 mice. We successfully detected ZF transcripts
with a similar beneficial effect as in the CNS: approximately 60%
reduction in mutant HTT transcript levels. This is the first study to
show an efficient reduction in mutant HTT mRNA levels in HD
skeletal muscles in vivo. Importantly, the expression of ZF molecules
in HD skeletal muscles did not trigger any apparent immunological
response, as judged based on unchanged Tnf-alpha transcript levels.
Finally, we addressed the feasibility of HSP90 promoter use in
cardiac tissue. We analyzed heart tissues from symptomatic R6/
1 mice at 3 and 6 weeks post single injection of AAV2/9, carrying ZF
molecules under the HSP90 promoter control. We found ZF
transcripts to be abundantly expressed in the HD hearts, leading
consequently to a significant reduction of mutant Htt. We also
verified whether mutant Htt reduction might have an impact on the
previously characterised panel of biomarkers related to HD induced
cardiomyopathy (Mielcarek et al., 2014c). Strikingly, we found that
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transcript levels of Anf (atrial natriuretic factor), Bnp (brain
natriuretic protein), two members of the four and half LIM
family Fhl1 and Fhl2 and S100A4 (S100 calcium binding protein
A4) were brought back nearly to wild-type levels. This indicates that
lowering mutant HTT transcript levels directly in HD hearts leads to
reversing transcriptional pathological remodelling. However, there
is a need in the future to further validate whether other pathological
features of HD cardiomyopathy can be also efficiently reversed
(Mielcarek et al., 2014c; Toczek et al., 2016a; Toczek et al., 2016b).

In summary, our study offers a novel asset, an HSP90
(HSP90AB1) promoter-enhancer, to be used for the efficient
expression of therapeutic molecules in various somatic tissues.
The use of this promoter can be extended beyond the HD
therapeutic area whenever there is a need to apply therapeutic
molecules in a ubiquitous manner.

Materials and methods

Mouse maintenance and genotyping

The R6/1 mouse line was purchased from Jackson Laboratories
(US) and was bred and genotyped as previously described
(Mielcarek et al., 2013b; Agustin-Pavon et al., 2016; Mazur-
Michalek et al., 2022). The cumulative CAG count for all R6/
1 mice used in this study was 131 ± 2.7 SD. All experimental
procedures were conducted under a project license from the Home
Office, UK and approved by the Animal Welfare and Ethical Review
Body of Imperial College London. All animals had unlimited access
to water and breeding chow (Special Diet Services, Witham, UK),
and housing conditions and environmental enrichment were as
described previously (Agustin-Pavon et al., 2016).

AAV production

AAV2/9 mZF–KRAB, containing a HSP90 promoter were used
in this study were produced at the Centre for Animal Biotechnology
and Gene Therapy of the Universitat Autonoma of Barcelona, as
described previously (Agustin-Pavon et al., 2016). The AAV was
purified by precipitation with PEG 8000, followed by iodixanol
gradient ultracentrifugation with final titers up to ~1012 genome
copies/mL.

Mouse surgery—AAV delivery routes

Free hand intraventricular AAV injections in neonates were
performed as previously described (Kim et al., 2014; Agustin-Pavon
et al., 2016). Briefly, neonatal mice (P0.5) were anesthetized with
isoflurane and were subjected to bilateral intraventricular injection
of AAVs, within 24 h of birth to ensure full ventricular dilation. The
maximum possible volume of 2 μl of viral vector, or PBS, was
injected into each cerebral lateral ventricle, using a sterile 10 μl
Hamilton microsyringe. The injection site was at the 2/5 of the
distance from the lambda suture to each eye and the needle was
inserted at a depth of approximately 3 mm. Warming pads were
used to recover neonatal mice immediately after injection, as

described previously (Agustin-Pavon et al., 2016). In this study
we injected 4 μl in total per mouse with a viral titre of 1010 AAV/μl
(4 × 1010 viral particles total). Mice were killed at 3, 6, 12 or 24 weeks
after the injections and brains were harvested, snap frozen in liquid
nitrogen, and stored at −80°C until further analysis by qRT-PCR.

The protocol for Intrathecal injections (IT) was adopted from
(Vulchanova et al., 2010; Njoo et al., 2014). Adult mice were
anaesthetized by inhalation of a mixture of 1.0 l/min O2 and up
to 5.0% isoflurane. Anaesthesia was confirmed by lack of movement
after squeezing a paw and slow-down respiration. AAVs or PBS were
injected into the intrathecal space of the lower lumbar cord. The
successful 27 G needle penetration into the intrathecal space was
indicated by a tail flick. The maximum volume of the injected
solution was 10 μl per mice. In total 1010 viral particles was injected
per mouse. Next, mice were recovered immediately after injection
and placed on the warming pads. Mice were killed 6 weeks after the
injections and brains were harvested, snap frozen in liquid nitrogen,
and stored at −80°C until further analysis by qRT-PCR.

Direct intra-muscular injections (IM) were performed
accordingly to the previously published protocol (Gruntman
et al., 2013). Prior to surgery, mice were weighed and deeply
anaesthetized by inhalation of a mixture of 1.0 l/min O2 and
5.0% isoflurane. Anaesthetized mice were taken out of anaesthesia
chamber and the anaesthetic mixture was lowered to 0.5 l/min
oxygen and 1.0%–2.0% isoflurane and provided through the flow
mask. Typically, tibialis anterior muscles were directly injected with
a 29-Gauge 0.5 ml insulin syringe (BD). A maximum of 10 μl of
AAVs or PBS was injected. In this study we injected total 4 × 1010

viral particles per muscle. Mice were killed at 3 and 6 weeks after the
injections and TA muscles were harvested, snap frozen in liquid
nitrogen, and stored at −80°C until further analysis by qRT-PCR.

In order to express the zinc finger transcripts in the HD heart,
intra-jugular injections (IJ) were performed according to the
previously published protocol (Gao et al., 2020). Briefly, mice
were weighed and deeply anaesthetized by inhalation of a
mixture of 1.0 l/min O2 and 5.0% isoflurane. Anaesthetized mice
were placed in a ventral recumbent position and the anaesthetic
mixture was lowered to 0.5 l/min oxygen and 1.0%–2.0% isoflurane.
A small incision was made lateral to the ventral midline, from the
pectoral muscle to the lower neck. The right jugular vein was
exposed with blunt dissection. AAV vectors or PBS were
delivered into the systemic circulation through a direct injection
using a 29-Gauge 0.5 ml insulin syringe (BD) into the right jugular
vein. In this study we injected a total of 1011 viral particles per mouse.
Mice were killed at 6 weeks after the injections and hearts were
harvested, snap frozen in liquid nitrogen, and stored at −80°C until
further analysis by qRT-PCR.

A summary of all delivery routes including time-lines can be
found in the Supplementary Figure S4.

RNA extraction and taqman real-time PCR
expression analysis

Total RNA from eye tissues was extracted with themini-RNA kit
(Qiagen, United Kingdom), according to the manufacturer’s
instructions. The reverse transcription reaction was performed
using MMLV superscript reverse transcriptase (Invitrogen,
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United States) and random hexamers (Sigma, United States), as
described in earlier studies (Agustin-Pavon et al., 2016; Piotrowska
et al., 2017; Mazur-Michalek et al., 2022). All Taqman qPCR
reactions were performed with a LightCycler® 480 Instrument
(Roche), as described previously (Mielcarek and Isalan, 2021b;
Mazur-Michalek et al., 2022). Estimation of mRNA copy number
was determined in triplicate for each RNA sample by comparison
with the geometric mean of three endogenous housekeeping genes
(Primer Design, United Kingdom), as described previously for the
brain and brain regions (Mielcarek et al., 2011; Mielcarek et al.,
2013b; Agustin-Pavon et al., 2016), skeletal muscles (Mielcarek et al.,
2015; Mielcarek et al., 2017) and heart tissue (Mielcarek et al., 2014a;
Mielcarek et al., 2014c; Toczek et al., 2016b). The following Taq-man
assays for selected genes of interest, were used as previously
described: mZF, wt HTT and mutant exon-1 HTT (Agustin-
Pavon et al., 2016), HD heart biomarkers (Mielcarek et al., 2014c).

Statistical analysis

Values were presented as mean ± SEM. Statistical analysis was
performed using paired Student t tests (Excel) or One-Way Anova
SPSS (IBM). A p-value of 0.05 was considered as a significant
difference.
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