92 research outputs found

    Concentrated Perchlorate at the Mars Phoenix Landing Site: Evidence for Thin Film Liquid Water on Mars

    Get PDF
    NASA\u27s Phoenix mission, which landed on the northern plains of Mars in 2008, returned evidence of the perchlorate anion distributed evenly throughout the soil column at the landing site. Here, we use spectral data from Phoenix\u27s Surface Stereo Imager to map the distribution of perchlorate salts at the Phoenix landing site, and find that perchlorate salt has been locally concentrated into subsurface patches, similar to salt patches that result from aqueous dissolution and redistribution on Earth. We propose that thin films of liquid water are responsible for translocating perchlorate from the surface to the subsurface, and for concentrating it in patches. The thin films are interpreted to result from melting of minor ice covers related to seasonal and long-term obliquity cycles

    Risk for Clostridium difficile Infection after Radical Cystectomy for Bladder Cancer: Analysis of a Contemporary Series

    Get PDF
    Introduction This study seeks to evaluate the incidence and associated risk factors of Clostridium difficile infection (CDI) in patients undergoing radical cystectomy (RC) for bladder cancer. Methods We retrospectively reviewed a single institution׳s bladder cancer database including all patients who underwent RC between 2010 and 2013. CDI was diagnosed by detection of Clostridium difficile toxin B gene using polymerase chain reaction–based stool assay in patients with clinically significant diarrhea within 90 days of the index operation. A multivariable logistic regression model was used to identify demographics and perioperative factors associated with developing CDI. Results Of the 552 patients who underwent RC, postoperative CDI occurred in 49 patients (8.8%) with a median time to diagnosis after RC of 7 days (interquartile range: 5–19). Of the 122 readmissions for postoperative complications, 10% (n = 12) were related to CDI; 2 patients died of sepsis directly related to severe CDI. On multivariate logistic regression, the use of chronic antacid therapy (odds ratio = 1.9, 95% CI: 1.02–3.68, P = 0.04) and antibiotic exposure greater than 7 days (odds ratio = 2.2, 95% CI: 1.11–4.44, P = 0.02) were independently associated with developing CDI. The use of preoperative antibiotics for positive findings on urine culture within 30 days before surgery was not statistically significantly associated with development of CDI (P = 0.06). Conclusions The development of CDI occurs in 8.8% of patients undergoing RC. Our study demonstrates that use of chronic antacid therapy and long duration of antimicrobial exposure are associated with development of CDI. Efforts focusing on minimizing antibiotic exposure in patients undergoing RC are needed, and perioperative antimicrobial prophylaxis guidelines should be followed

    Hubble Space Telescope NICMOS Polarization Observations of Three Edge-on Massive YSOs

    Full text link
    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.2'' spatial resolution of NICMOS on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 micron polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ~ 2'' south of the line connecting the two lobes; we do not detect this star at 2 micron, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither YSO has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.Comment: 39 pages, 7 figures, 4 tables To be published in The Astrophysical Journa

    KELT-6b: A P~7.9 d Hot Saturn Transiting a Metal-Poor Star with a Long-Period Companion

    Get PDF
    We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V=10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T_eff=6102 \pm 43 K, log(g_*)=4.07_{-0.07}^{+0.04} and [Fe/H]=-0.28 \pm 0.04, with an inferred mass M_*=1.09 \pm 0.04 M_sun and radius R_star=1.58_{-0.09}^{+0.16} R_sun. The planetary companion has mass M_P=0.43 \pm 0.05 M_J, radius R_P=1.19_{-0.08}^{+0.13} R_J, surface gravity log(g_P)=2.86_{-0.08}^{+0.06}, and density rho_P=0.31_{-0.08}^{+0.07} g~cm^{-3}. The planet is on an orbit with semimajor axis a=0.079 \pm 0.001 AU and eccentricity e=0.22_{-0.10}^{+0.12}, which is roughly consistent with circular, and has ephemeris of T_c(BJD_TDB)=2456347.79679 \pm 0.00036 and P=7.845631 \pm 0.000046 d. Equally plausible fits that employ empirical constraints on the host star parameters rather than isochrones yield a larger planet mass and radius by ~4-7%. KELT-6b has surface gravity and incident flux similar to HD209458b, but orbits a host that is more metal poor than HD209458 by ~0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images.Comment: Published in AJ, 17 pages, 15 figures, 6 table

    KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star

    Get PDF
    We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of 1.28±0.181.28 \pm 0.18 MJ, radius of 1.530.047+0.0461.53_{-0.047}^{+0.046} RJ, and an orbital period of 2.7347749±0.00000392.7347749 \pm 0.0000039 days. The bright host star (HD33643; KELT-7) is an F-star with V=8.54V=8.54, Teff =678949+50=6789_{-49}^{+50} K, [Fe/H] =0.1390.081+0.075=0.139_{-0.081}^{+0.075}, and logg=4.149±0.019\log{g}=4.149 \pm 0.019. It has a mass of 1.5350.054+0.0661.535_{-0.054}^{+0.066} Msun, a radius of 1.7320.045+0.0431.732_{-0.045}^{+0.043} Rsun, and is the fifth most massive, fifth hottest, and the ninth brightest star known to host a transiting planet. It is also the brightest star around which KELT has discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed characterization given its relatively low surface gravity, high equilibrium temperature, and bright host star. The rapid rotation of the star (73±0.573 \pm 0.5 km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude of several hundred m/s. We find that the orbit normal of the planet is likely to be well-aligned with the stellar spin axis, with a projected spin-orbit alignment of λ=9.7±5.2\lambda=9.7 \pm 5.2 degrees. This is currently the second most rapidly rotating star to have a reflex signal (and thus mass determination) due to a planetary companion measured.Comment: Accepted to The Astronomical Journa

    Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect

    Get PDF
    Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is 200 ±\pm 40 J m−2 s−0.5 K−1. Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D^(−1) dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.Comment: Icarus (30/03/2007) in pres
    corecore