32 research outputs found

    Management of hepatitis C virus genotype 4: recommendations of an international expert panel.

    Get PDF
    HCV has been classified into no fewer than six major genotypes and a series of subtypes. Each HCV genotype is unique with respect to its nucleotide sequence, geographic distribution, and response to therapy. Genotypes 1, 2, and 3 are common throughout North America and Europe. HCV genotype 4 (HCV-4) is common in the Middle East and in Africa, where it is responsible for more than 80% of HCV infections. It has recently spread to several European countries. HCV-4 is considered a major cause of chronic hepatitis, cirrhosis, hepatocellular carcinoma, and liver transplantation in these regions. Although HCV-4 is the cause of approximately 20% of the 170 million cases of chronic hepatitis C in the world, it has not been the subject of widespread research. Therefore, this document, drafted by a panel of international experts, aimed to review current knowledge on the epidemiology, natural history, clinical, histological features, and treatment of HCV-4 infections

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Chalcones and chalcone-mimetic derivatives as Notch inhibitors in a model of T-cell Acute Lymphoblastic Leukemia

    Get PDF
    Based on hit-likeness and chemical diversity, a number of chalcones and chalcone-mimetic compounds were selected as putative Notch inhibitors. The evaluation of the antiproliferative effect combined with the inhibition of Notch1 expression in KOPTK1 cell line identified compound 18, featuring a tetrahydronaphthalene-based scaffold, as a new promising Notch-blocking agent

    Executive Summary of the KDIGO 2022 Clinical Practice Guideline for the Prevention, Diagnosis, Evaluation, and Treatment of Hepatitis C in Chronic Kidney Disease

    No full text
    Infection with the hepatitis C virus (HCV) has adverse liver, kidney, and cardiovascular consequences in patients with chronic kidney disease (CKD), including those on dialysis therapy or with a kidney transplant. Since the publication of the Kidney Disease: Improving Global Outcomes (KDIGO) HCV Guideline in 2018, advances in HCV management, particularly in the field of antiviral therapy and treatment of HCV-associated glomerular diseases, coupled with increased usage of HCV-positive kidney grafts, have prompted a reexamination of the 2018 guideline. As a result, the Work Group performed a comprehensive review and revised the 2018 guidance. This Executive Summary highlights key aspects of the updated guideline recommendations for 3 chapters: Chapter 2: Treatment of HCV infection in patients with CKD; Chapter 4: Management of HCV-infected patients before and after kidney transplantation; and Chapter 5: Diagnosis and management of kidney diseases associated with HCV infection.Funding Agencies|KDIGO</p
    corecore