285 research outputs found

    Targeted disruption of melanin biosynthesis genes in the human pathogenic fungus Lomentospora prolificans and its consequences for pathogen survival

    Get PDF
    PublishedArticleThe dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to its resistance to amphotericin B

    A lichen protected by a super-hydrophobic and breathable structure

    Get PDF
    A species of lichen, Lecanora conizaeoides, is shown to be super-hydrophobic. It uses a combination of hydrophobic compounds and multi-layered roughness to shed water effectively. This is combined with gas channels to produce a biological analogue of a waterproof, breathable garment. The particular lichen grows mostly during wet seasons and is unusually resistant to acid rain [Hauck, M., 2003. The Bryotogist 106(2), 257-269; Honegger, R., 1998. Lichenologist 30(3),193-212]. The waterproof, breathable surface allows this lichen to photosynthesise when other species are covered with a layer of water. In addition, rainwater runs off the surface of the organism, reducing its intake of water from above and probably contributing to its resistance to acid rain

    Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae

    Get PDF
    The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smol physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection

    Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination immunotherapies can be effective against subcutaneous tumors in mice but the effect against orthotopic malignant disease is less well characterized. In particular, a combination of three agonist antibodies, termed Tri-mAb, consisting of anti-DR5, anti-CD40 and anti-CD137 has previously been demonstrated to eradicate a large proportion of subcutaneous renal cell carcinoma (Renca) tumors (75% long-term survival), but the effect against orthotopic disease is not known.</p> <p>Purpose</p> <p>To determine the relative response of orthotopic tumors, we inoculated Renca into the kidney followed by treatment with Tri-mAb.</p> <p>Results</p> <p>We found that orthotopic tumors responded much less to treatment (~13% survival), but a significant improvement in survival was achieved through the addition of IL-2 to the treatment regimen (55% survival). All three agonist antibodies and high dose IL-2, 100,000 IU for up to six doses, were required. CD8<sup>+ </sup>T cells were also required for optimal anti-tumor responses. Coadministration of IL-2 led to enhanced T cell activity as demonstrated by an increased frequency of IFN-gamma-producing T cells in tumor-draining lymph nodes, which may have contributed to the observed improvement of therapy against kidney tumors.</p> <p>Implications</p> <p>Responses of subcutaneous tumors to immunotherapy do not necessarily reflect how orthotopic tumors respond. The use of combination immunotherapy stimulating multiple facets of immunity and including cytokine support for T cells can induce effective anti-tumor responses against orthotopic and metastatic tumors.</p

    Genetic Redirection of T Cells for the Treatment of Pancreatic Cancer

    Get PDF
    Conventional treatments for pancreatic cancer are largely ineffective, and the prognosis for the vast majority of patients is poor. Clearly, new treatment options are desperately needed. Immunotherapy offers hope for the development of treatments for pancreatic cancer. A central requirement for the efficacy of this approach is the existence of cancer antigen-specific T cells, but these are often not present or difficult to isolate for most pancreatic tumors. Nevertheless, specific T cells can be generated using genetic modification to express chimeric antigen receptors (CAR), which can enable T cell responses against pancreatic tumor cells. CAR T cells can be produced ex vivo and expanded in vitro for infusion into patients. Remarkable responses have been documented using CAR T cells against several malignancies, including leukemias and lymphomas. Based on these successes, the extension of CAR T cell therapy for pancreatic cancer holds great promise. However, there are a number of challenges that limit the full potential of CAR T cell therapies for pancreatic cancer, including the highly immunosuppressive tumor microenvironment (TME). In this article, we will review the recent progress in using CAR T cells in pancreatic cancer preclinical and clinical settings, discuss hurdles for utilizing the full potential of CAR T cell therapy and propose research strategies and future perspectives. Research into the use of CAR T cell therapy in pancreatic cancer setting is rapidly gaining momentum and understanding strategies to overcome the current challenges in the pancreatic cancer setting will allow the development of effective CAR T cell therapies, either alone or in combination with other treatments to benefit pancreatic cancer patients

    Overcoming the challenges of studying conservation physiology in large whales : a review of available methods

    Get PDF
    Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples (‘blow’), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures.Publisher PDFPeer reviewe

    A sensor kinase controls turgor-driven plant infection by the rice blast fungus

    Get PDF
    The blast fungus Magnaporthe oryzae gains entry to its host plant by means of a specialized pressure-generating infection cell called an appressorium, which physically ruptures the leaf cuticle. Turgor is applied as an enormous invasive force by septin-mediated reorganization of the cytoskeleton and actin-dependent protrusion of a rigid penetration hypha. However, the molecular mechanisms that regulate the generation of turgor pressure during appressorium-mediated infection of plants remain poorly understood. Here we show that a turgor-sensing histidine–aspartate kinase, Sln1, enables the appressorium to sense when a critical turgor threshold has been reached and thereby facilitates host penetration. We found that the Sln1 sensor localizes to the appressorium pore in a pressure-dependent manner, which is consistent with the predictions of a mathematical model for plant infection. A Δsln1 mutant generates excess intracellular appressorium turgor, produces hyper-melanized non-functional appressoria and does not organize the septins and polarity determinants that are required for leaf infection. Sln1 acts in parallel with the protein kinase C cell-integrity pathway as a regulator of cAMP-dependent signalling by protein kinase A. Pkc1 phosphorylates the NADPH oxidase regulator NoxR and, collectively, these signalling pathways modulate appressorium turgor and trigger the generation of invasive force to cause blast disease

    Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation

    Get PDF
    Significance The Fe(II)- and 2-oxoglutarate (2OG)-dependent hypoxia-inducible transcription factor prolyl-hydroxylases play a central role in human oxygen sensing and are related to other prolyl-hydroxylases involved in eukaryotic collagen biosynthesis and ribosomal modification. The finding that a PHD-related prolyl-hydroxylase in Pseudomonas spp. regulates pyocyanin biosynthesis supports prokaryotic origins for the eukaryotic prolyl-hydroxylases. The identification of the switch I loop of elongation factor Tu (EF-Tu) as a Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) substrate provides evidence of roles for 2OG oxygenases in both translational and transcriptional regulation. A structure of the PPHD:EF-Tu complex, the first to the authors' knowledge of a 2OG oxygenase with its intact protein substrate, reveals that major conformational changes occur in both PPHD and EF-Tu and will be useful in the design of new prolyl-hydroxylase inhibitors. </jats:p

    The coalition for conservation genetics: working across organizations to build capacity and achieve change in policy and practice

    Get PDF
    The Coalition for Conservation Genetics (CCG) brings together four eminentorganizations with the shared goal of improving the integration of geneticinformation into conservation policy and practice. We provide a historicalcontext of conservation genetics as a field and reflect on current barriers toconserving genetic diversity, highlighting the need for collaboration acrosstraditional divides, international partnerships, and coordinated advocacy. Wethen introduce the CCG and illustrate through examples how a coalitionapproach can leverage complementary expertise and improve the organiza-tional impact at multiple levels. The CCG has proven particularly successfulat implementing large synthesis-type projects, training early-career scientists,and advising policy makers. Achievements to date highlight the potential forthe CCG to make effective contributions to practical conservation policy andmanagement that no one“parent”organization could achieve on its own.Finally, we reflect on the lessons learned through forming the CCG, and ourvision for the futur
    corecore