140 research outputs found

    Oh! I Slipped the Surly Bounds of Earth....and Ran into Space Weather!

    Get PDF
    Over the past decade the concept of space weather has been introduced and matured in both the scientific community and popular press. Likewise the concept of space climatology recently also is being advanced. Closely linked to these concepts are their impacts on ground- and space-based technological systems; one such system commonly mentioned is manned space flight exemplified by the Space Shuttle and International Space Station (ISS). From a manned space flight perspective, space weather and space climatology have significant effects on the amount of radiation exposure received by humans in space from the ambient high-energy charged particles present in interplanetary space and trapped in the geomagnetosphere. Whereas the impact of space weather for most technological systems is usually discrete and well correlated in time, the principle impact of space weather and space climatology is to increase the probability of latent cancer formation in thetraveler cohort. In this regard, while space weather may be the dominating factor for a given mission, over the life of a long-term program such as the Space Shuttle or ISS space climatology is the controlling factor of latent cancer risk. Human radiation exposure enhancements associated with space weather disturbances has been a concern among scientist and mission controllers since the inception of manned spaceflight nearly forty years ago. This led NASA to develop, in conjunction with the Environmental Science Services Administration s Space Disturbance Forecast Center and the USAF/AWS, the Solar Particle Alert Network (SPAN)-the foundation of an initial U.S. space weather monitoring and forecasting service. Since Apollo, routine space flight operations have evolved to include the use of space weather and climatology data provided through a world-wide network of operational space weather data services to predict and recommend actions to minimize astronaut radiation exposures. NASA Space Radiation Analysis Group (SRAG) flight controllers use real-time space weather data to detect and assess the impact of solar particle events, outer electron belt enhancements, the formation of pseudo-stable additional trapped radiation belts, and the solar cycle modulation of trapped radiation belts and galactic cosmic rays. Energetic particle data from GOES spacecraft are automatically ingested from NOAA Space Environment Center data servers and used to drive a model for the estimating the exposure to astronauts from solar particle events. While adequate for current manned space flight support, the existing operational space weather support system requires improvements to address the anticipated evolution in both the character of manned missions as well as space flight operations management. Necessary space weather data improvements include: reliably available (near) real-time space weather data on a fixed schedule via redundant access methods that support autonomous data acquisition by computer systems behind enterprise firewalls; and rapid transition of promising research sensors into operational systems

    The first cosmic ray albedo proton map of the Moon

    Get PDF
    [1] Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface composition and properties. During the LRO mission, the total detection rate of albedo protons between 60 MeV and 150 MeV has been declining since 2009 in parallel with the decline in the galactic cosmic ray flux, which validates the concept of an albedo proton source. On the other hand, the average yield of albedo protons has been increasing as the galactic cosmic ray spectrum has been hardening, consistent with a disproportionately stronger modulation of lower energy GCRs as solar activity increases. We construct the first map of the normalized albedo proton emission rate from the lunar surface to look for any albedo variation that correlates with surface features. The map is consistent with a spatially uniform albedo proton yield to within statistical uncertainties

    Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module

    Get PDF
    Abstract We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate galactic cosmic ray (GCR) dose and dose equivalent rates in the Earth and Mars atmospheres for various altitudes over the course of the LRO mission. While we cannot validate these predictions by directly comparable measurement, we find that our results conform to expectations and are in good agreement with the nearest available measurements and therefore may be used as reasonable estimates for use in efforts in risk assessment in the planning of future space missions as well as in the study of GCRs. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other solar energetic particles measurements) is an online system designed to provide the scientific community with a comprehensive resource on the radiation environments of the inner heliosphere. The data products shown here will be incorporated into PREDICCS in order to further this effort and daily updates will be made available on the PREDICCS website (http://prediccs.sr.unh.edu). Key Points We model GCR dose and dose equivalent rates in Earth and Mars atmospheres Dose rates are in reasonable agreement with nearby measurements Data products will soon be made available on PREDICCS website

    Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Get PDF
    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

    “Generalized osteoarthritis”: A systematic review

    Get PDF
    Given the conflicting definitions of “generalized osteoarthritis” (GOA) in the literature, we performed a systematic review of GOA definitions, risk factors, and outcomes

    Genome-wide association meta-analyses to identify common genetic variants associated with hallux valgus in Caucasian and African Americans

    Get PDF
    Objective Hallux valgus (HV) affects ∌36% of Caucasian adults. Although considered highly heritable, the underlying genetic determinants are unclear. We conducted the first genome-wide association study (GWAS) aimed to identify genetic variants associated with HV. Methods HV was assessed in three Caucasian cohorts (n=2263, n=915 and n=1231 participants, respectively). In each cohort, a GWAS was conducted using 2.5 M imputed SNPs. Mixed-effect regression with the additive genetic model adjusted for age, sex, weight and within-family correlations was used for both sex-specific and combined analyses. To combine GWAS results across cohorts, fixed-effect inverse-variance meta-analyses were used. Following meta-analyses, top-associated findings were also examined in an African American cohort (n=327). Results The proportion of HV variance explained by genome-wide genotyped SNPs was 50% in men and 48% in women. A higher proportion of genetic determinants of HV were sex specific. The most significantly associated SNP in men was rs9675316 located on chr17q23-a24 near the AXIN2 gene (p=0.000000546×10−7); the most significantly associated SNP in women was rs7996797 located on chr13q14.1-q14.2 near the ESD gene (p=0.000000721×10−7). Genome-wide significant SNP-by-sex interaction was found for SNP rs1563374 located on chr11p15.1 near the MRGPRX3 gene (interaction p value =0.0000000041×10−9). The association signals diminished when combining men and women. Conclusions The findings suggest that the potential pathophysiological mechanisms of HV are complex and strongly underlined by sex-specific interactions. The identified genetic variants imply contribution of biological pathways observed in osteoarthritis as well as new pathways, influencing skeletal development and inflammation

    Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument

    Get PDF
    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER), an instrument carried on the Lunar Reconnaissance Orbiter spacecraft, directly measures the energy depositions by solar and galactic cosmic radiations in its silicon wafer detectors. These energy depositions are converted to linear energy transfer (LET) spectra. High LET particles, which are mainly high‐energy heavy ions found in the incident cosmic ray spectrum, or target fragments and recoils produced by protons and heavier ions, are of particular importance because of their potential to cause significant damage to human tissue and electronic components. Aside from providing LET data useful for space radiation risk analyses for lunar missions, the observed LET spectra can also be used to help validate space radiation transport codes, used for shielding design and risk assessment applications, which is a major thrust of this work. In this work the Monte Carlo transport code HETC‐HEDS (High‐Energy Transport Code‐Human Exploration and Development in Space) is used to estimate LET contributions from the incident primary ions and their charged secondaries produced by nuclear collisions as they pass through the three pairs of silicon detectors. Also in this work, the contributions to the LET of the primary ions and their charged secondaries are analyzed and compared with estimates obtained using the deterministic space radiation code HZETRN 2010, developed at NASA Langley Research Center. LET estimates obtained from the two transport codes are compared with measurements of LET from the CRaTER instrument during the mission. Overall, a comparison of the LET predictions of the HETC‐HEDS code to the predictions of the HZETRN code displays good agreement. The code predictions are also in good agreement with the CRaTER LET measurements above 15 keV/”m but differ from the measurements for smaller values of LET. A possible reason for this disagreement between measured and calculated spectra below 15 keV/”m is an inadequate representation of the light ion spectra in HETC‐HEDS and HZETRN code calculations. It is also clear from the results of this work that Vavilov distributions need to be incorporated into the HETC‐HJEDS code before it will be able to recreate the observed LET spectra measured by the CRaTER instrument. Key Points Vavilov corrections should be incorporated into simulated results The predictions of the transport codes reasonably agree with the CRaTER LET The observed LET can be used to help validate space radiation transport codesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108081/1/swe20145.pd

    A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation.

    Get PDF
    As modeling becomes a more widespread practice in the life sciences and biomedical sciences, researchers need reliable tools to calibrate models against ever more complex and detailed data. Here we present an approximate Bayesian computation (ABC) framework and software environment, ABC-SysBio, which is a Python package that runs on Linux and Mac OS X systems and that enables parameter estimation and model selection in the Bayesian formalism by using sequential Monte Carlo (SMC) approaches. We outline the underlying rationale, discuss the computational and practical issues and provide detailed guidance as to how the important tasks of parameter inference and model selection can be performed in practice. Unlike other available packages, ABC-SysBio is highly suited for investigating, in particular, the challenging problem of fitting stochastic models to data. In order to demonstrate the use of ABC-SysBio, in this protocol we postulate the existence of an imaginary reaction network composed of seven interrelated biological reactions (involving a specific mRNA, the protein it encodes and a post-translationally modified version of the protein), a network that is defined by two files containing 'observed' data that we provide as supplementary information. In the first part of the PROCEDURE, ABC-SysBio is used to infer the parameters of this system, whereas in the second part we use ABC-SysBio's relevant functionality to discriminate between two different reaction network models, one of them being the 'true' one. Although computationally expensive, the additional insights gained in the Bayesian formalism more than make up for this cost, especially in complex problems

    Physical therapy vs. internet-based exercise training (PATH-IN) for patients with knee osteoarthritis: study protocol of a randomized controlled trial

    Get PDF
    Abstract Background Physical activity improves pain and function among individuals with knee osteoarthritis (OA), but most people with this condition are inactive. Physical therapists play a key role in helping people with knee OA to increase appropriate physical activity. However, health care access issues, financial constraints, and other factors impede some patients from receiving physical therapy (PT) for knee OA. A need exists to develop and evaluate other methods to provide physical activity instruction and support to people with knee OA. This study is examining the effectiveness of an internet-based exercise training (IBET) program designed for knee OA, designed by physical therapists and other clinicians. Methods/Design This is a randomized controlled trial of 350 participants with symptomatic knee OA, allocated to three groups: IBET, standard PT, and a wait list (WL) control group (in a 2:2:1 ratio, respectively). The study was funded by the Patient Centered Outcomes Research Institute, which conducted a peer review of the proposal. The IBET program provides patients with a tailored exercise program (based on functional level, symptoms, and current activity), video demonstrations of exercises, and guidance for appropriate exercise progression. The PT group receives up to 8 individual visits with a physical therapist, mirroring standard practice for knee OA and with an emphasis on a home exercise program. Outcomes are assessed at baseline, 4 months (primary time point) and 12 months (to assess maintenance of treatment effects). The primary outcome is the Western Ontario and McMaster Universities Osteoarthritis Index, and secondary outcomes include objective physical function, satisfaction with physical function, physical activity, depressive symptoms and global assessment of change. Linear mixed models will be used to compare both the IBET and standard PT groups to the WL control group, examine whether IBET is non-inferior to PT (a treatment that has an established evidence base for knee OA), and explore whether participant characteristics are associated with differential effects of IBET and/or standard PT. This research is in compliance with the Helsinki Declaration and was approved by the Institutional Review Board of the University of North Carolina at Chapel Hill. Discussion The IBET program could be disseminated widely at relatively low cost and could be an important resource for helping patients with knee OA to adopt and maintain appropriate physical activity. This trial will provide an important evaluation of the effectiveness of this IBET program for knee OA. Trial registration NCT0231271

    Activity pacing for osteoarthritis symptom management: study design and methodology of a randomized trial testing a tailored clinical approach using accelerometers for veterans and non-veterans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a prevalent chronic disease and a leading cause of disability in adults. For people with knee and hip OA, symptoms (e.g., pain and fatigue) can interfere with mobility and physical activity. Whereas symptom management is a cornerstone of treatment for knee and hip OA, limited evidence exists for behavioral interventions delivered by rehabilitation professionals within the context of clinical care that address how symptoms affect participation in daily activities. Activity pacing, a strategy in which people learn to preplan rest breaks to avoid symptom exacerbations, has been effective as part of multi-component interventions, but hasn't been tested as a stand-alone intervention in OA or as a tailored treatment using accelerometers. In a pilot study, we found that participants who underwent a tailored activity pacing intervention had reduced fatigue interference with daily activities. We are now conducting a full-scale trial.</p> <p>Methods/Design</p> <p>This paper provides a description of our methods and rationale for a trial that evaluates a tailored activity pacing intervention led by occupational therapists for adults with knee and hip OA. The intervention uses a wrist accelerometer worn during the baseline home monitoring period to glean recent symptom and physical activity patterns and to tailor activity pacing instruction based on how symptoms relate to physical activity. At 10 weeks and 6 months post baseline, we will examine the effectiveness of a tailored activity pacing intervention on fatigue, pain, and physical function compared to general activity pacing and usual care groups. We will also evaluate the effect of tailored activity pacing on physical activity (PA).</p> <p>Discussion</p> <p>Managing OA symptoms during daily life activity performance can be challenging to people with knee and hip OA, yet few clinical interventions address this issue. The activity pacing intervention tested in this trial is designed to help people modulate their activity levels and reduce symptom flares caused by too much or too little activity. As a result of this trial, we will be able to determine if activity pacing is more effective than usual care, and among the intervention groups, if an individually tailored approach improves fatigue and pain more than a general activity pacing approach.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01192516">NCT01192516</a></p
    • 

    corecore