39 research outputs found

    Polarization charge densities provide a predictive quantification of hydrogen bond energies

    Get PDF
    A systematic density functional theory based study of hydrogen bond energies of 2465 single hydrogen bonds has been performed. In order to be closer to liquid phase conditions, different from the usual reference state of individual donor and acceptor molecules in vacuum, the reference state of donors and acceptors embedded in a perfect conductor as simulated by the COSMO solvation model has been used for the calculation of the hydrogen bond energies. The relationship between vacuum and conductor reference hydrogen bond energies is investigated and interpreted in the light of different physical contributions, such as electrostatic energy and dispersion. A very good correlation of the DFT/COSMO hydrogen bond energies with conductor polarization charge densities of separated donor and acceptor atoms was found. This provides a method to predict hydrogen bond strength in solution with a root mean square error of 0.36 kcal mol−1 relative to the quantum chemical dimer calculations. The observed correlation is broadly applicable and allows for a predictive quantification of hydrogen bonding, which can be of great value in many areas of computational, medicinal and physical chemistry

    Persistent Quantitative Vitality of Stem Cell Graft Is Necessary for Stabilization of Functional Brain Networks After Stroke

    Get PDF
    Stem cell treatment after stroke has demonstrated substantial outcome improvement. However, monitoring of stem cell fate in vivo is still challenging and not routinely performed, yet important to quantify the role of the implanted stem cells on lesion improvement; in several studies even mortality of the graft has been reported. Resting state functional magnetic resonance imaging (rs-fMRI) is a highly sensitive imaging modality to monitor the brain-wide functional network alterations of many brain diseases in vivo. We monitor for 3 months the functional connectivity changes after intracortical stem cell engraftment in large, cortico-striatal (n = 9), and in small, striatal (n = 6) ischemic lesions in the mouse brain with non-invasive rs-fMRI on a 9.4T preclinical MRi scanner with GE-EPI sequence. Graft vitality is continuously recorded by bioluminescence imaging (BLI) roughly every 2 weeks after implantation of 300 k neural stem cells. In cortico-striatal lesions, the lesion extension induces graft vitality loss, in consequence leading to a parallel decrease of functional connectivity strength after a few weeks. In small, striatal lesions, the graft vitality is preserved for the whole observation period and the functional connectivity is stabilized at values as in the pre-stroke situation. But even here, at the end of the observation period of 3 months, the functional connectivity strength is found to decrease despite preserved graft vitality. We conclude that quantitative graft viability is a necessary but not sufficient criterion for functional neuronal network stabilization after stroke. Future studies with even longer time periods after stroke induction will need to identify additional players which have negative influence on the functional brain networks

    In-Vivo Visualization of Tumor Microvessel Density and Response to Anti-Angiogenic Treatment by High Resolution MRI in Mice

    Get PDF
    Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice. Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size. Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects ha

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Mþller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    A refined cavity construction algorithm for the conductor-like screening model

    No full text
    A cavity construction algorithm based on the triangulation of an iso-surface is introduced as a new standard for dielectric continuum solvation calculations with the Conductor-like Screening Model COSMO. It overcomes deficiencies which have become apparent for the original COSMO standard cavity, especially in concave regions of the molecular shaped cavity. The new standard, called FINE Cavity, is described in this article with several application examples. The earlier COSMO cavity construction algorithms are described for comparison. (c) 2018 Wiley Periodicals, Inc

    Quantenchemische Untersuchungen zur ĂŒbergangsmetallkatalysierten Hydratisierung von Alkinen

    No full text

    First Principles Calculations of Aqueous p K a Values for Organic and Inorganic Acids Using COSMO−RS Reveal an Inconsistency in the Slope of the p K a Scale

    No full text
    The COSMO−RS method, a combination of the quantum chemical dielectric continuum solvation model COSMO with a statistical thermodynamics treatment for more realistic solvation (RS) simulations, has been used for the direct prediction of pKa constants of a large variety of 64 organic and inorganic acids. A highly significant correlation of r2 = 0.984 with a standard deviation of only 0.49 between the calculated values of the free energies of dissociation and the experimental pKa values was found, without any special adjustment of the method. Thus, we have a theoretical a priori prediction method for pKa, which has the regression constant and the slope as only adjusted parameters. Such a method can be of great value in many areas of physical chemistry, especially in pharmaceutical and agrochemical industry. To our surprise, the slope of pKa vs ΔGdiss is only 58% of the theoretically expected value of 1/RTln(10). A careful analysis with respect to different contributions as well as a comparison with the work of other authors excludes the possibility that the discrepancy is due to weaknesses of the calculation method. Hence, we must conclude that the experimental pKa scale depends differently on the free energy of dissociation than generally assumed

    Benchmarking different QM-levels for usage with COSMO-RS

    No full text
    The COSMO-RS method is an established method for the prediction of fluid phase properties such as activity coefficients, liquid-liquid equilibria and free energy of solvation. It is also frequently used in quantum-chemistry based chemical reaction modelling to predict the solvation contribution to the reactions. The COSMOtherm software, which features the currently most advanced implementation of COSMO-RS, is based on quantum-chemical COSMO calculations using the BP86 functional with the def2-TZVPD basis set. As the accuracy of COSMO-RS depends on the accuracy of the underlying quantum-chemical (QC) calculation, it is important to validate the currently used level against other common, presumably superior, approaches such as the more recently developed M06-2x hybrid density functional, or wave-function methods such as MP2. As compared to other applications where the electronic energy is the most important result of the QC calculation, the COSMO-RS method has a much higher dependence on the molecular polarity and thus the electron density distribution. We find that MP2, PBE0 and M06-2X perform slightly worse in fully reparametrized COSMO-RS with respect to the prediction of experimentally measured properties like pKa or logP. Although MP2 was reported to yield better polarities than most DFT functionals for spin unpolarized molecules, this theoretical advantage does not manifest in a practical benefit for the prediction of the properties with the refitted COSMO-RS parameters. Other pure DFT functionals such as PBE or TPSS can be used instead of BP86, but again no practical advantage is expected as they yield extremely similar polarities to the original BP86 calculations
    corecore