76 research outputs found

    Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells

    Get PDF
    The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current) methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods

    The Three Rs: The Way Forward

    Get PDF
    This is the report of the eleventh of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM), which was established in 1991 by the European Commission. ECVAM\u27s main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine or replace the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures which would enable it to become well-informed about the state-of-the-art of non-animal test development and validation. and the potential for the possible incorporation of replacement alternative tests into regulatory procedures. It was decided that this would be best achieved by the organisation of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward

    A clinical and economic evaluation of Control of Hyperglycaemia in Paediatric intensive care (CHiP): a randomised controlled trial.

    Get PDF
    BACKGROUND: Early research in adults admitted to intensive care suggested that tight control of blood glucose during acute illness can be associated with reductions in mortality, length of hospital stay and complications such as infection and renal failure. Prior to our study, it was unclear whether or not children could also benefit from tight control of blood glucose during critical illness. OBJECTIVES: This study aimed to determine if controlling blood glucose using insulin in paediatric intensive care units (PICUs) reduces mortality and morbidity and is cost-effective, whether or not admission follows cardiac surgery. DESIGN: Randomised open two-arm parallel group superiority design with central randomisation with minimisation. Analysis was on an intention-to-treat basis. Following random allocation, care givers and outcome assessors were no longer blind to allocation. SETTING: The setting was 13 English PICUs. PARTICIPANTS: Patients who met the following criteria were eligible for inclusion: ≥ 36 weeks corrected gestational age; ≤ 16 years; in the PICU following injury, following major surgery or with critical illness; anticipated treatment > 12 hours; arterial line; mechanical ventilation; and vasoactive drugs. Exclusion criteria were as follows: diabetes mellitus; inborn error of metabolism; treatment withdrawal considered; in the PICU > 5 consecutive days; and already in CHiP (Control of Hyperglycaemia in Paediatric intensive care). INTERVENTION: The intervention was tight glycaemic control (TGC): insulin by intravenous infusion titrated to maintain blood glucose between 4.0 and 7.0 mmol/l. CONVENTIONAL MANAGEMENT (CM): This consisted of insulin by intravenous infusion only if blood glucose exceeded 12.0 mmol/l on two samples at least 30 minutes apart; insulin was stopped when blood glucose fell below 10.0 mmol/l. MAIN OUTCOME MEASURES: The primary outcome was the number of days alive and free from mechanical ventilation within 30 days of trial entry (VFD-30). The secondary outcomes comprised clinical and economic outcomes at 30 days and 12 months and lifetime cost-effectiveness, which included costs per quality-adjusted life-year. RESULTS: CHiP recruited from May 2008 to September 2011. In total, 19,924 children were screened and 1369 eligible patients were randomised (TGC, 694; CM, 675), 60% of whom were in the cardiac surgery stratum. The randomised groups were comparable at trial entry. More children in the TGC than in the CM arm received insulin (66% vs. 16%). The mean VFD-30 was 23 [mean difference 0.36; 95% confidence interval (CI) -0.42 to 1.14]. The effect did not differ among prespecified subgroups. Hypoglycaemia occurred significantly more often in the TGC than in the CM arm (moderate, 12.5% vs. 3.1%; severe, 7.3% vs. 1.5%). Mean 30-day costs were similar between arms, but mean 12-month costs were lower in the TGC than in CM arm (incremental costs -£3620, 95% CI -£7743 to £502). For the non-cardiac surgery stratum, mean costs were lower in the TGC than in the CM arm (incremental cost -£9865, 95% CI -£18,558 to -£1172), but, in the cardiac surgery stratum, the costs were similar between the arms (incremental cost £133, 95% CI -£3568 to £3833). Lifetime incremental net benefits were positive overall (£3346, 95% CI -£11,203 to £17,894), but close to zero for the cardiac surgery stratum (-£919, 95% CI -£16,661 to £14,823). For the non-cardiac surgery stratum, the incremental net benefits were high (£11,322, 95% CI -£15,791 to £38,615). The probability that TGC is cost-effective is relatively high for the non-cardiac surgery stratum, but, for the cardiac surgery subgroup, the probability that TGC is cost-effective is around 0.5. Sensitivity analyses showed that the results were robust to a range of alternative assumptions. CONCLUSIONS: CHiP found no differences in the clinical or cost-effectiveness of TGC compared with CM overall, or for prespecified subgroups. A higher proportion of the TGC arm had hypoglycaemia. This study did not provide any evidence to suggest that PICUs should stop providing CM for children admitted to PICUs following cardiac surgery. For the subgroup not admitted for cardiac surgery, TGC reduced average costs at 12 months and is likely to be cost-effective. Further research is required to refine the TGC protocol to minimise the risk of hypoglycaemic episodes and assess the long-term health benefits of TGC. TRIAL REGISTRATION: Current Controlled Trials ISRCTN61735247. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 18, No. 26. See the NIHR Journals Library website for further project information

    Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution

    Get PDF
    The microtubule axoneme is an iconic structure in eukaryotic cell biology and the defining structure in all eukaryotic flagella (or cilia). Flagella occur in taxa spanning the breadth of eukaryotic evolution, which indicates that the organelle's origin predates the radiation of extant eukaryotes from a last common ancestor. During evolution, the flagellar architecture has been subject to both elaboration and moderation. Even conservation of 9+2 architecture—the classic microtubule configuration seen in most axonemes—belies surprising variation in protein content. Classically considered as organelles of motility that support cell swimming or fast movement of material across a cell surface, it is now clear that the functions of flagella are also far broader; for instance, the involvement of flagella in sensory perception and protein secretion has recently been made evident in both protists and animals. Here, we review and discuss, in an evolutionary context, recent advances in our understanding of flagellum function and composition

    The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impairment of cilia and flagella function underlies a growing number of human genetic diseases. Mutations in <it>hydin </it>in <it>hy3 </it>mice cause lethal communicating hydrocephalus with early onset. Hydin was recently identified as an axonemal protein; however, its function is as yet unknown.</p> <p>Results</p> <p>Here we use RNAi in <it>Trypanosoma brucei </it>to address this issue and demonstrate that loss of Hydin causes slow growth and a loss of cell motility. We show that two separate defects in newly-formed flagellar central pair microtubules underlie the loss of cell motility. At early time-points after RNAi induction, the central pair becomes mispositioned, while at later time points the central pair is lost. While the basal body is unaffected, both defects originate at the basal plate, reflecting a role for TbHydin throughout the length of the central pair.</p> <p>Conclusion</p> <p>Our data provide the first evidence of Hydin's role within the trypanosome axoneme, and reveal central pair anomalies and thus impairment of ependymal ciliary motility as the likely cause of the hydrocephalus observed in the <it>hy3 </it>mouse.</p

    Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.

    Get PDF
    BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T&gt;G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T&gt;G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects
    corecore