110 research outputs found
Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.
BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice
A clinical and economic evaluation of Control of Hyperglycaemia in Paediatric intensive care (CHiP): a randomised controlled trial.
BACKGROUND: Early research in adults admitted to intensive care suggested that tight control of blood glucose during acute illness can be associated with reductions in mortality, length of hospital stay and complications such as infection and renal failure. Prior to our study, it was unclear whether or not children could also benefit from tight control of blood glucose during critical illness. OBJECTIVES: This study aimed to determine if controlling blood glucose using insulin in paediatric intensive care units (PICUs) reduces mortality and morbidity and is cost-effective, whether or not admission follows cardiac surgery. DESIGN: Randomised open two-arm parallel group superiority design with central randomisation with minimisation. Analysis was on an intention-to-treat basis. Following random allocation, care givers and outcome assessors were no longer blind to allocation. SETTING: The setting was 13 English PICUs. PARTICIPANTS: Patients who met the following criteria were eligible for inclusion: ≥ 36 weeks corrected gestational age; ≤ 16 years; in the PICU following injury, following major surgery or with critical illness; anticipated treatment > 12 hours; arterial line; mechanical ventilation; and vasoactive drugs. Exclusion criteria were as follows: diabetes mellitus; inborn error of metabolism; treatment withdrawal considered; in the PICU > 5 consecutive days; and already in CHiP (Control of Hyperglycaemia in Paediatric intensive care). INTERVENTION: The intervention was tight glycaemic control (TGC): insulin by intravenous infusion titrated to maintain blood glucose between 4.0 and 7.0 mmol/l. CONVENTIONAL MANAGEMENT (CM): This consisted of insulin by intravenous infusion only if blood glucose exceeded 12.0 mmol/l on two samples at least 30 minutes apart; insulin was stopped when blood glucose fell below 10.0 mmol/l. MAIN OUTCOME MEASURES: The primary outcome was the number of days alive and free from mechanical ventilation within 30 days of trial entry (VFD-30). The secondary outcomes comprised clinical and economic outcomes at 30 days and 12 months and lifetime cost-effectiveness, which included costs per quality-adjusted life-year. RESULTS: CHiP recruited from May 2008 to September 2011. In total, 19,924 children were screened and 1369 eligible patients were randomised (TGC, 694; CM, 675), 60% of whom were in the cardiac surgery stratum. The randomised groups were comparable at trial entry. More children in the TGC than in the CM arm received insulin (66% vs. 16%). The mean VFD-30 was 23 [mean difference 0.36; 95% confidence interval (CI) -0.42 to 1.14]. The effect did not differ among prespecified subgroups. Hypoglycaemia occurred significantly more often in the TGC than in the CM arm (moderate, 12.5% vs. 3.1%; severe, 7.3% vs. 1.5%). Mean 30-day costs were similar between arms, but mean 12-month costs were lower in the TGC than in CM arm (incremental costs -£3620, 95% CI -£7743 to £502). For the non-cardiac surgery stratum, mean costs were lower in the TGC than in the CM arm (incremental cost -£9865, 95% CI -£18,558 to -£1172), but, in the cardiac surgery stratum, the costs were similar between the arms (incremental cost £133, 95% CI -£3568 to £3833). Lifetime incremental net benefits were positive overall (£3346, 95% CI -£11,203 to £17,894), but close to zero for the cardiac surgery stratum (-£919, 95% CI -£16,661 to £14,823). For the non-cardiac surgery stratum, the incremental net benefits were high (£11,322, 95% CI -£15,791 to £38,615). The probability that TGC is cost-effective is relatively high for the non-cardiac surgery stratum, but, for the cardiac surgery subgroup, the probability that TGC is cost-effective is around 0.5. Sensitivity analyses showed that the results were robust to a range of alternative assumptions. CONCLUSIONS: CHiP found no differences in the clinical or cost-effectiveness of TGC compared with CM overall, or for prespecified subgroups. A higher proportion of the TGC arm had hypoglycaemia. This study did not provide any evidence to suggest that PICUs should stop providing CM for children admitted to PICUs following cardiac surgery. For the subgroup not admitted for cardiac surgery, TGC reduced average costs at 12 months and is likely to be cost-effective. Further research is required to refine the TGC protocol to minimise the risk of hypoglycaemic episodes and assess the long-term health benefits of TGC. TRIAL REGISTRATION: Current Controlled Trials ISRCTN61735247. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 18, No. 26. See the NIHR Journals Library website for further project information
Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution
The microtubule axoneme is an iconic structure in eukaryotic cell biology and the defining structure in all eukaryotic flagella (or cilia). Flagella occur in taxa spanning the breadth of eukaryotic evolution, which indicates that the organelle's origin predates the radiation of extant eukaryotes from a last common ancestor. During evolution, the flagellar architecture has been subject to both elaboration and moderation. Even conservation of 9+2 architecture—the classic microtubule configuration seen in most axonemes—belies surprising variation in protein content. Classically considered as organelles of motility that support cell swimming or fast movement of material across a cell surface, it is now clear that the functions of flagella are also far broader; for instance, the involvement of flagella in sensory perception and protein secretion has recently been made evident in both protists and animals. Here, we review and discuss, in an evolutionary context, recent advances in our understanding of flagellum function and composition
Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells
The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current) methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods
Cardiac MR-derived indices are stronger predictors of resource use and risk than jugular venous pressure, in paediatric patients with functionally single ventricles, prior to completion of total cavopulmonary connection (TCPC)
Recommended from our members
Targeting the muscarinic M1 receptor with a selective, brain-penetrant antagonist to promote remyelination in multiple sclerosis
Multiple sclerosis (MS) is a chronic and debilitating neurological disease that results in inflammatory demyelination. While endogenous remyelination helps to recover function, this restorative process tends to become less efficient over time. Currently, intense efforts aimed at the mechanisms that promote remyelination are being considered promising therapeutic approaches. The M1 muscarinic acetylcholine receptor (M1R) was previously identified as a negative regulator of oligodendrocyte differentiation and myelination. Here, we validate M1R as a target for remyelination by characterizing expression in human and rodent oligodendroglial cells (including those in human MS tissue) using a highly selective M1R probe. As a breakthrough to conventional methodology, we conjugated a fluorophore to a highly M1R selective peptide (MT7) which targets the M1R in the subnanomolar range. This allows for exceptional detection of M1R protein expression in the human CNS. More importantly, we introduce PIPE-307, a brain-penetrant, small-molecule antagonist with favorable drug-like properties that selectively targets M1R. We evaluate PIPE-307 in a series of in vitro and in vivo studies to characterize potency and selectivity for M1R over M2-5R and confirm the sufficiency of blocking this receptor to promote differentiation and remyelination. Further, PIPE-307 displays significant efficacy in the mouse experimental autoimmune encephalomyelitis model of MS as evaluated by quantifying disability, histology, electron microscopy, and visual evoked potentials. Together, these findings support targeting M1R for remyelination and support further development of PIPE-307 for clinical studies
The Three Rs: The Way Forward
This is the report of the eleventh of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM), which was established in 1991 by the European Commission. ECVAM\u27s main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine or replace the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures which would enable it to become well-informed about the state-of-the-art of non-animal test development and validation. and the potential for the possible incorporation of replacement alternative tests into regulatory procedures. It was decided that this would be best achieved by the organisation of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward
Recommended from our members
AI Workflow, External Validation, and Development in Eye Disease Diagnosis
Timely disease diagnosis is challenging due to limited clinical availability and growing burdens. Although artificial intelligence (AI) has shown expert-level diagnostic accuracy, a lack of downstream accountability, including workflow integration, external validation, and further development, continues to hinder its clinical adoption.
To address gaps in the downstream accountability of medical AI through a case study on age-related macular degeneration (AMD) diagnosis and severity classification.
This diagnostic study developed and evaluated an AI-assisted diagnostic and classification workflow for AMD. Four rounds of diagnostic assessments (accuracy and time) were conducted with 24 clinicians from 12 institutions. Each round was randomized and alternated between manual (clinician diagnosis) and manual plus AI (clinician assisted by AI diagnosis), with a 1-month washout period. In total, 2880 AMD risk features were evaluated across 960 images from 240 Age-Related Eye Disease Study patient samples, both with and without AI assistance. For further development, the original DeepSeeNet model was enhanced into the DeepSeeNet+ model using 39 196 additional images from the US population and tested on 3 datasets, including an external set from Singapore.
Age-related macular degeneration risk features.
The F1 score for accuracy (Wilcoxon rank sum test) and diagnostic time (linear mixed-effects model) were measured, comparing manual vs manual plus AI. For further development, the F1 score (Wilcoxon rank sum test) was again used.
Among 240 patients (mean [SD] age, 68.5 [5.0] years; 127 female [53%]), AI assistance significantly improved accuracy for 23 of 24 clinicians, increasing the mean F1 score from 37.71 (95% CI, 27.83-44.17) to 45.52 (95% CI, 39.01-51.61), with some improvements exceeding 50%. Manual diagnosis initially took an estimated 39.8 seconds (95% CI, 34.1-45.6 seconds) per patient, whereas manual plus AI saved 10.3 seconds (95% CI, -15.1 to -5.5 seconds) and remained faster by 6.9 seconds (95% CI, 0.2-13.7 seconds) to 8.6 seconds (95% CI, 1.8-15.3 seconds) in subsequent rounds. However, combining manual and AI did not always yield the highest accuracy or efficiency, underscoring challenges in explainability and trust. The DeepSeeNet+ model performed better in 3 test sets, achieving a significantly higher F1 score than the Singapore cohort (52.43 [95% CI, 44.38-61.00] vs 38.95 [95% CI, 30.50-47.45]).
In this diagnostic study, AI assistance was associated with improved accuracy and time efficiency for AMD diagnosis. Further development is essential for enhancing AI generalizability across diverse populations. These findings highlight the need for downstream accountability during early-stage clinical evaluations of medical AI
The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules
Background: Impairment of cilia and flagella function underlies a growing number of human genetic diseases. Mutations in hydin in hy3 mice cause lethal communicating hydrocephalus with early onset. Hydin was recently identified as an axonemal protein; however, its function is as yet unknown. Results: Here we use RNAi in Trypanosoma brucei to address this issue and demonstrate that loss of Hydin causes slow growth and a loss of cell motility. We show that two separate defects in newly-formed flagellar central pair microtubules underlie the loss of cell motility. At early time-points after RNAi induction, the central pair becomes mispositioned, while at later time points the central pair is lost. While the basal body is unaffected, both defects originate at the basal plate, reflecting a role for TbHydin throughout the length of the central pair. Conclusion: Our data provide the first evidence of Hydin's role within the trypanosome axoneme, and reveal central pair anomalies and thus impairment of ependymal ciliary motility as the likely cause of the hydrocephalus observed in the hy3 mouse
All About Mentoring: A Publication of the Empire State College Mentoring Institute
Tending to Our CultureStrengthening Civic LearningIn Manhattan, ProtestingAll Area of Study Meeting 2002At the Crossroads of Creativity, Critique and CitizenshipTversky's Ghost: Disequilibrium in the Market for "Truth" in EconomicsThe Adult Learner and MathImposition from OutsideOff the Treadmill: Transforming the System of Academic AssessmentMidlife Transitions and MentoringFrom the Diary of a Still-New Mentor: An Afternoon at Empire State CollegeChanging Times and Changing Lives: An Introduction to Transformational Learning Research and PracticeTwo PoemsTransparency, the American Legal System and Corporate MalfeasanceWhen There are Silences, Let There be Silences An Interview with Ellen HawkesRe-interpreting the World: Experiential Learning and Personal HistoryTwo PoemsA Return to MentoringA Mentor's Charge of ObligationInching Toward Utopia A Review of M. Joseph Sirgy's Handbook of Quality of Life Research: An Ethical Marketing Perspective. Netherlands: Kluwer Academic Publishers, 2001Citizens, Governments and Well-being A Review Essay of David Porter and Chester L. Mirsky, Megamall on the Hudson: Planning, Wal-Mart and Grassroots Resistance (Victoria, B.C., Canada: Trafford: 2002
- …
