173 research outputs found
Risk management strategies using seasonal climate forecasting in irrigated cotton production: a tale of stochastic dominance
Decisionâmaking in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and streamâflows in northâeastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigatorsâ attitude towards risk.Crop Production/Industries, Risk and Uncertainty,
Recommended from our members
Composition of titania coatings deposited by different techniques
Quantitative dement concentrations in titania films produced by different deposition techniques (evaporation, sputtering, ion-assisted deposition, ion plating and dip coating) have been determined by means of Rutherford Backscattering Spectrometry and Nuclear Reaction Analysis with the reaction ÂčH(Âčâ”N, αγ)ÂčÂČC. Large differences of the hydrogen content are found for the various production techniques and the related deposition parameters, which correlate with the refractive index of the respective film. In dependence on the deposition conditions the oxygen/titanium ratio of the investigated titania films varies between 1.95 and 2.09. The impurities detected in the films (tantalum, molybdenum, silicon, argon, carbon, sodium) can be related to specific deposition conditions. Three multilayer interference systems containing TiOâ and SiOâ show large variations in hydrogen content resembling those found for single TiOâ films
Impact of submarine groundwater discharge on biogeochemistry and microbial communities in pockmarks
The impact of submarine groundwater discharge (SGD) on coastal sea biogeochemistry has been demonstrated in many recent studies. However, only a few studies have integrated biogeochemical and microbiological analyses, especially at sites with pockmarks of different degrees of groundwater influence. This study investigated biogeochemical processes and microbial community structure in sediment cores from three pockmarks in Hanko, Finland, in the northern Baltic Sea. Pockmark data were supplemented by groundwater and seawater measurements. Two active pockmarks showed SGD rates of 0.02 cm d-1 and 0.31 cm d-1, respectively, based on porewater Cl- profiles, while a third pockmark had no SGD influence. Reactive transport modelling (RTM) established that the porewater systems of these active pockmarks are dominated by advection, resulting in the focusing of biogeochemical reactions and the microbial community into a thin zone at the sediment surface. The advection further reduces the accumulation of organic matter in the surface sediments, resulting in the absence of a sulfate-methane transition zone (SMTZ) at these pockmarks. Furthermore, the RTM estimated low rates of consumption of SO42-, and low rates of production of CH4, NH4+, DIC at the active pockmarks. Archaeal communities in the active pockmarks were dominated by ammonia-oxidizing archaea of predominantly groundwater origin. In contrast, at the inactive pockmark, the lack of SGD has permitted rapid deposition of organic-rich mud. The porewater system in the inactive pockmark is dominated by diffusion, leading to orders of magnitude higher metabolite concentrations at depth compared to the active pockmarks. The biogeochemical environment in the inactive pockmark resembles typical organic-rich mud seafloor in the area, with sulphate reduction and methanogenesis dominating organic matter remineralization. Accordingly, methanogens dominate the archaeal community, whereas sulfate reducers dominate the bacterial community. RTM results suggest that sulfate-mediated anaerobic oxidation of methane (S-AOM) also occurs at this site. Although depth-integrated fluxes of SO42-, CH4, NH4, DIC at the inactive pockmark are orders of magnitude higher compared to the active pockmarks, processes at the inactive pockmark represent internal recycling in the coastal sea. Fluxes observed at the active pockmarks, although comparatively small in magnitude, are partly influenced by external inputs to the sea through SGD. Hence, effluxes across the sediment-water interface at these sites partly represent direct external fluxes to the marine environment, in addition to diagenetic recycling at the benthic interface. The study highlights that SGD can result in significant spatial heterogeneity of biogeochemical processes and microbial community structure in the coastal zone, and that the overall effects of SGD and associated solute fluxes at an SGD site are a function of the number of pockmarks, the rate of SGD, and the ratio of active to inactive pockmarks.Peer reviewe
Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events : flooding or prolonged-drought
Extreme weather events, including flooding and prolonged-drought, may establish long-lasting effects on soil biotic and abiotic properties, thus influencing ecosystem functions including primary productivity in subsequent years. Nitrogen (N) fertilizer addition often improves soil fertility, thereby potentially alleviating legacy effects on soil function and plant productivity. The soil microbial community plays a central role in mediating soil functioning; however, little is known about the legacy impacts of extreme weather events and N fertilizer addition on soil bacterial communities and the key processes involved in carbon (C) cycling. Here, the potential legacy effects of waterlogging, prolonged-drought and N fertilizer addition (0, 100, 200 and 300 kg N/ha) on soil bacteria and microbial respiration were investigated. The abundance, diversity and composition of the bacterial community, and basal and induced-respiration rates, in a farming soil system were examined, using quantitative PCR, high-throughput DNA sequencing, and MicroRespâą. Soils previously exposed to short-term waterlogging events and prolonged-drought (by air-drying for 4 months) were used in our study. Prolonged drought, but not waterlogging, had a strong legacy effect on the soil bacterial community and microbial respiration. The addition of N fertilizer up to 300 kg N/ha could not fully counteract the legacy effects of prolonged-drought on soil bacteria. However, N addition did increase bacterial abundance and diversity, and inhibited soil microbial respiration. Significant correlations between microbial respiration and bacterial community structure were observed, but N addition weakened these relationships. Our results suggest that the resilience (rate of recovery) of soil bacterial communities and functions to prolonged-drought is limited in farming systems, and therefore, may take a long time to recover completely. Subsequently, this should be explicitly considered when developing adaptation strategies to alleviate the impacts of extreme weather events
Biotic and abiotic responses to soilborne pathogens and environmental predictors of soil health
Soilborne pathogens affect agricultural productivity and soil functions, yet their specific impacts of pathogen infections on the soil and plant root-associated microbiomes, the key determinants of plant health, remain unclear. Filling this knowledge gap is required to understanding microbial ecological responses, and to developing biological tools to manage and predict the prevalence and severity of soilborne diseases, which can improve soil health, and plant yield. We hypothesized that soilborne pathogens impact the diversity, function, and ecological interactions in soil microbiomes and form a pathobiome. To test the hypothess, we conducted field sampling in 35 cotton fields in Australia and collected a total of 560 soil samples, which included samples from the rhizosphere (the area in close contact with the roots) and bulk soils. We aimed to investigate how soil microbiomes and key soil properties respond to Verticillium wilt (VW) of cotton, which is caused by the soilborne pathogen Verticillium dahliae. We found that the presence of the pathogen altered the microbiome structure in both bulk and rhizosphere soils. Notably, healthy soils exhibited more complex microbial networks then diseased soils. Furthermore, a putative pathobiome consisting of various microbial taxa that could influence pathogen infection was identified. Specific pathobiome taxa, such as Gibellulopsis spp., displayed a positive association with V. dahliae. In contrast, known biocontrol agents (BCAs) such as Bacillus spp., Fusarium spp., and Talaromyces spp., were negatively correlated with pathogen abundance. After isolation, pathobiome BCA members demonstrated strong biocontrol activity against V. dahliae in vitro, indicating their potential for enhancing resistance to pathogen invasion in agricultural soils. Moreover, shotgun sequencing analysis revealed a gene encoding beta-glucosidase as a putative indicator of soil health. Structural Equation Modelling showed that VW disease incidence is significantly influenced by several factors, including the relative abundance of V. dahliae, the pathobiome, and various abiotic factors such as precipitation, soil moisture, and pH. Taken together, our findings offer novel field evidence for the key biotic and abiotic drivers of a soilborne pathogen. This knowledge could facilitate the development of biological tools to control soilborne diseases and predict soil health and disease incidence, thus providing innovative strategies for sustainable agricultural disease management.This work has been funded by Cotton Research and Development Corporation and Australian Research Council (DP210102081; DP230101448). We thank the Cotton Info team for their generous help with field survey.Peer reviewe
Recommended from our members
Heat and moisture budgets from airborne measurements and high-resolution model simulations
High-resolution simulations with a mesoscale model are performed to estimate heat and moisture budgets of a well-mixed boundary layer. The model budgets are validated against energy budgets obtained from airborne measurements over heterogeneous terrain in Western Germany. Time rate of change, vertical divergence, and horizontal advection for an atmospheric column of air are estimated. Results show that the time trend of specific humidity exhibits some deficiencies, while the potential temperature trend is matched accurately. Furthermore, the simulated turbulent surface fluxes of sensible and latent heat are comparable to the measured fluxes, leading to similar values of the vertical divergence. The analysis of different horizontal model resolutions exhibits improved surface fluxes with increased resolution, a fact attributed to a reduced aggregation effect. Scale-interaction effects could be identified: while time trends and advection are strongly influenced by mesoscale forcing, the turbulent surface fluxes are mainly controlled by microscale processes
Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing
Two-dimensional (2D) semiconducting materials are particularly appealing for many applications. Although theory predicts a large number of 2D materials, experimentally only a few of these materials have been identified and characterized comprehensively in the ultrathin limit. Lead iodide, which belongs to the transition metal halides family and has a direct bandgap in the visible spectrum, has been known for a long time and has been well characterized in its bulk form. Nevertheless, studies of this material in the nanometer thickness regime are rather scarce. In this article we demonstrate an easy way to synthesize ultrathin, highly crystalline flakes of PbI2 by precipitation from a solution in water. We thoroughly characterize the produced thin flakes with different techniques ranging from optical and Raman spectroscopy to temperature-dependent photoluminescence and electron microscopy. We compare the results to ab initio calculations of the band structure of the material. Finally, we fabricate photodetectors based on PbI2 and study their optoelectronic properties.We acknowledge financial support from the European Commission under the Graphene Flagship (CNECTICT-604391), and European Research Council (ERC-StG-MINT 307609), the MINECO, the Comunidad de Madrid, the Netherlands Organisation for Scientific Research (NWO), and the German Science Foundation (DFG). JLL and JFR acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH. JFR acknowledges financial support from MEC-Spain (MAT2016-78625-C2)
- âŠ