22 research outputs found

    Systems Pharmacology Dissection of Multi-Scale Mechanisms of Action of Huo-Xiang-Zheng-Qi Formula for the Treatment of Gastrointestinal Diseases

    Get PDF
    Multi-components Traditional Chinese Medicine (TCM) treats various complex diseases (multi-etiologies and multi-symptoms) via herbs interactions to exert curative efficacy with less adverse effects. However, the ancient Chinese compatibility theory of herbs formula still remains ambiguous. Presently, this combination principle is dissected through a systems pharmacology study on the mechanism of action of a representative TCM formula, Huo-xiang-zheng-qi (HXZQ) prescription, on the treatment of functional dyspepsia (FD), a chronic or recurrent clinical disorder of digestive system, as typical gastrointestinal (GI) diseases which burden human physical and mental health heavily and widely. In approach, a systems pharmacology platform which incorporates the pharmacokinetic and pharmaco-dynamics evaluation, target fishing and network pharmacological analyses is employed. As a result, 132 chemicals and 48 proteins are identified as active compounds and FD-related targets, and the mechanism of HXZQ formula for the treatment of GI diseases is based on its three function modules of anti-inflammation, immune protection and gastrointestinal motility regulation mainly through four, i.e., PIK-AKT, JAK-STAT, Toll-like as well as Calcium signaling pathways. In addition, HXZQ formula conforms to the ancient compatibility rule of “Jun-Chen-Zuo-Shi” due to the different, while cooperative roles that herbs possess, specifically, the direct FD curative effects of GHX (serving as Jun drug), the anti-bacterial efficacy and major accompanying symptoms-reliving bioactivities of ZS and BZ (as Chen), the detoxication and ADME regulation capacities of GC (as Shi), as well as the minor symptoms-treating efficacy of the rest 7 herbs (as Zuo). This work not only provides an insight of the therapeutic mechanism of TCMs on treating GI diseases from a multi-scale perspective, but also may offer an efficient way for drug discovery and development from herbal medicine as complementary drugs

    Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal

    No full text
    Abstract Background Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC. Methods We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-β, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-β /pSMAD3 and AMPK/AKT pathways. Results 786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-β/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells. Conclusions VPA not only exhibits synergistic cytotoxicity with metformin but also counteracts resistance to metformin in renal cell carcinoma cell. The re-sensitization to metformin induced by VPA in metformin-resistant cells may help treat renal cell carcinoma patients

    Genome‐wide analysis of long non‐coding RNAs in esophageal squamous cell carcinoma reveals their potential role in invasion and metastasis

    No full text
    Background A high lymphatic metastasis rate and strong local invasive ability are the key characteristics of esophageal squamous cell carcinoma (ESCC) that affect patient survival, and long non‐coding RNAs (lncRNAs) may play a crucial role. We performed genome‐wide analysis of lncRNAs to identify novel biomarkers associated with local invasion and lymphatic metastasis in ESCC. Methods Six pairs of ESCC tumor and para‐tumor tissues were subjected to microarray analysis to identify differentially expressed lncRNAs, and 25 pairs of tissues samples were used to verify the effectiveness of screened lncRNAs using quantitative reverse transcription PCR. The correlations between verified lncRNAs and clinicopathological characteristics were analyzed to confirm specific lncRNAs associated with the local invasion and lymphatic metastasis of ESCC, and gene co‐expression analysis was used to predict potential mechanisms. Results Microarray analysis identified 1850 lncRNAs with significant differential expression in ESCC. Of 22 lncRNAs selected for quantitative reverse transcription PCR verification, four were significantly upregulated and one was significantly downregulated in ESCC cancer compared to para‐cancer tissues. ENST00000508406.1 was significantly associated with T, N, and tumor node metastasis stages, and NR_037652.1 was significantly associated with N stage. Moreover, 49 lncRNA‐messenger RNA pairs were significantly associated with the two dysregulated lncRNAs and possibly involved in the regulation of local invasion and lymphatic metastasis of ESCC. Conclusion The present genome‐wide analysis identified two novel and tumor‐specific lncRNAs for predicting ESCC local invasion and lymphatic metastasis, providing insight into the potential underlying mechanism, which warrants further investigation

    Beta-Arrestin 2 Modulates Resveratrol-Induced Apoptosis and Regulation of Akt/GSK3β Pathways

    No full text
    Background: Resveratrol is emerging as a novel anticancer agent. However, the mechanism(s) by which resveratrol exerts its effects on endometrial cancer (EC) are unknown. We previously reported that β-arrestin 2 plays a critical role in cell apoptosis. The role of β-arrestin 2 in resveratrol modulation of endometrial cancer cell apoptosis remains to be established. Scope of Review: EC cells HEC1B and Ishikawa were transfected with either β-arrestin 2 RNA interfering (RNAi) plasmid or β-arrestin 2 full-length plasmid and control vector. The cells were then exposed to differing concentrations of resveratrol. Apoptotic cells were detected by TUNEL assay. Expression of total and phosphorylated Akt (p-Akt), total and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β), and caspase-3 were determined by Western blot analysis. Our data demonstrate that inhibition of β-arrestin 2 increases the number of apoptotic cells and caspase-3 activation. Additionally β-arrestin 2 exerted an additive effect on resveratrol-reduced levels of p-Akt and p-GSK3β. Overexpression of β-arrestin 2 decreased the percentage of apoptosis and caspase-3 activation and attenuated resveratrol-reduced levels of p-Akt and p-GSK3β. Taken together, our studies demonstrate for the first time that β-arrestin 2 mediated signaling plays a critical role in resveratrol-induced apoptosis in EC cells. Major Conclusions: Resveratrol primes EC cells to undergo apoptosis by modulating β-arrestin 2 mediated Akt/GSK3β signaling pathways. General significance: These inspiring findings would provide a new molecular basis for further understanding of cell apoptotic mechanisms mediated by β-arrestin 2 and may provide insights into a potential clinical relevance in EC

    Systems Pharmacology Dissection of Multiscale Mechanisms of Action for Herbal Medicines in Treating Rheumatoid Arthritis

    No full text
    As a chronic inflammatory and angiogenic disease with increased morbidity and mortality, rheumatoid arthritis (RA) is characterized by the proliferation of synovial tissue and the accumulation of excessive mononuclear infiltration, which always results in the joint deformity, disability, and eventually the destruction of the bone and cartilage. Traditional Chinese Medicine (TCM), with rich history of proper effectiveness in treating the inflammatory joint disease containing RA, has long combated such illness from, actually, an integrative and holistic point of view. However, its “multi-components” and “multi-targets” features make it very difficult to decipher the molecular mechanisms of RA from a systematic perspective if employing only routine methods. Presently, an innovative systems-pharmacology approach was introduced, which combined the ADME screening model, drug targeting, and network pharmacology, to explore the action mechanisms of botanic herbs for the treatment of RA. As a result, we uncovered 117 active compounds and 85 key molecular targets from seven RA-related herbs, which are mainly implicated in four signaling pathways, that is, vascular endothelial growth factor, PI3K-Akt, Toll-like receptor, and T-cell-receptor pathways. Additionally, the network relationships among the active components, target proteins, and pathways were further built to uncover the pharmacological characters of these herbs. Besides, molecular dynamics (MD) simulations and molecular mechanics-Poisson–Boltzmann surface area calculations were carried out to explore the binding interactions between the compounds and their receptors as well as to investigate the binding affinity of the ligand to their protein targets. <i>In vitro</i> experiments by ligand binding assays validate the reliability of the drug–target interactions as well as the MD results. The high binding affinities and good inhibitions of the active compounds indicate that the potential therapeutic effects of these herbal medicines for treating RA are exerted probably through the modulation of these relevant proteins, which further validates the rationality and reliability of the drug-target interactions as well as our the network-based analytical methods. This work may be of help for not only understanding the action mechanisms of TCM and for discovering new drugs from plants for the treatment of RA, but also providing a novel potential method for modern medicine in treating complex diseases

    System biology analysis reveals the role of voltage-dependent anion channel in mitochondrial dysfunction during non-alcoholic fatty liver disease progression into hepatocellular carcinoma

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of hepatocellular carcinoma (HCC), but the underlying mechanisms behind the correlation of NAFLD with HCC are unclear. We aimed to uncover the genes and potential mechanisms that drive this progression. This study uncovered the genes and potential mechanisms through a multiple 'omics integration approach. Quantitative proteomics combined with phenotype-association analysis was performed. To investigate the potential mechanisms, a comprehensive transcriptome/lipidome/phenome-wide association analysis was performed in genetic reference panel BXD mice strains. The quantitative proteomics combined with phenotype-association results showed that VDAC1 was significantly increased in tumor tissues and correlated with NAFLD-related traits. Gene co-expression network analysis indicated that VDAC1 is involved in mitochondria dysfunction in the tumorigenic/tumor progression. The association between VDAC1 and mitochondria dysfunction can be explained by the fact that VDAC1 was associated with mitochondria membrane lipids cardiolipin (CL) composition shift. VDAC1 was correlated with the suppression of mature specie CL(LLLL) and elevation level of nascent CL species. Such profiling shift was supported by the significant positive correlation between VDAC1 and PTPMT1, as well as negative correlation with CL remodeling enzyme Tafazzin (TAZ). This study confirmed that the expression of VADC1 was dysregulated in NAFLD-driven HCC and associated with NAFLD progression. The VDAC1-driven mitochondria dysfunction is associated with cardiolipin composition shift, which causes alteration of mitochondria membrane properties
    corecore