221 research outputs found

    Pleiotropic Roles of Cholesteryl Sulfate during Entamoeba Encystation: Involvement in Cell Rounding and Development of Membrane Impermeability

    Get PDF
    Entamoeba histolytica, a protozoan parasite, causes amoebiasis, which is a global public health problem. The major route of infection is oral ingestion of cysts, the only form that is able to transmit to a new host. Cysts are produced by cell differentiation from proliferative trophozoites in a process termed “encystation.” During encystation, cell morphology is markedly changed; motile amoeboid cells become rounded, nonmotile cells. Concomitantly, cell components change and significant fluctuations of metabolites occur. Cholesteryl sulfate (CS) is a crucial metabolite for encystation. However, its precise role remains uncertain. To address this issue, we used in vitro culture of Entamoeba invadens as the model system for the E. histolytica encystation study and identified serum-free culture conditions with CS supplementation at concentrations similar to intracellular CS concentrations during natural encystation. Using this culture system, we show that CS exerts pleiotropic effects during Entamoeba encystation, affecting cell rounding and development of membrane impermeability. CS dose dependently induced and maintained encysting cells as spherical maturing cysts with almost no phagocytosis activity. Consequently, the percentage of mature cysts was increased. CS treatment also caused time- and dose-dependent development of membrane impermeability in encysting cells via induction of de novo synthesis of dihydroceramides containing very long N-acyl chains ($26 carbons). These results indicate that CS-mediated morphological and physiological changes are necessary for the formation of mature cysts and the maintenance of the Entamoeba life cycle. Our findings also reveal important morphological aspects of the process of dormancy and the control of membrane structure

    A Flow Cytometry Method for Dissecting the Cell Differentiation Process of Entamoeba Encystation

    Get PDF
    Amoebiasis is caused by Entamoeba histolytica infection, a protozoan parasite belonging to the phylum Amoebozoa. This parasite undergoes a fundamental cell differentiation process from proliferative trophozoite to dormant cyst, termed “encystation.” The cysts formed by encystation are solely responsible for the transmission of amoebiasis; therefore, Entamoeba encystation is an important subject from both biological and medical perspectives. Here, we have established a flow cytometry strategy for not only determining the percentage of formed cysts but also for monitoring changes in cell populations during encystation. This strategy together with fluorescence microscopy enables visualization of the cell differentiation process of Entamoeba encystation. We also standardized another flow cytometry protocol for counting live trophozoites. These two different flow cytometry techniques could be integrated into 96-well plate-based bioassays for monitoring the processes of cyst formation and trophozoite proliferation, which are crucial to maintain the Entamoeba life cycle. The combined two systems enabled us to screen a chemical library, the Pathogen Box of the Medicine for Malaria Venture, to obtain compounds that inhibit either the formation of cysts or the proliferation of trophozoites, or both. This is a prerequisite for the development of new drugs against amoebiasis, a global public health problem. Collectively, the two different 96-well plate-based Entamoeba bioassay and flow cytometry analysis systems (cyst formation and trophozoite proliferation) provide a methodology that can not only overcome the limitations of standard microscopic counting but also is effective in applied as well as basic Entamoeba biology

    Thyroid-stimulating hormone elevation misdiagnosed as subclinical hypothyroidism following non-convulsive status epilepticus: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Non-convulsive status epilepticus is a form of epileptic seizure that occurs without convulsions. Recent reviews suggest that the diagnosis of non-convulsive status epilepticus remains difficult. Here, we report the case of a patient with thyroid-stimulating hormone elevation misdiagnosed as subclinical hypothyroidism following non-convulsive status epilepticus.</p> <p>Case presentation</p> <p>Our patient was a 68-year-old Japanese woman. The results of endocrine testing after her first episode of non-convulsive status epilepticus suggested latent subclinical hypothyroidism: she had elevated thyroid-stimulating hormone with normal levels of free tri-iodothyronine and free thyroxine. On examination, a diagnosis of thyroid disorder was not supported by other test results and our patient remained untreated. A follow-up examination revealed that her thyroid-stimulating hormone levels had spontaneously normalized. When she consulted another doctor for confusion, the transient increase in thyroid-stimulating hormone levels following non-convulsive status epilepticus was mistaken for subclinical hypothyroidism, and unfortunately treated with levothyroxine. Our patient then experienced levothyroxine-induced non-convulsive status epilepticus.</p> <p>Conclusions</p> <p>In this report, we suggested possible mechanisms for latent hypothyroid-like hormone abnormality following epileptic seizures and the possibility of provoking epileptic seizures by administering levothyroxine for misdiagnosed subclinical hypothyroidism.</p

    Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of Entamoeba histolytica

    Get PDF
    Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica

    Mortality rate of patients with asymptomatic primary biliary cirrhosis diagnosed at age 55 years or older is similar to that of the general population

    Get PDF
    Recent routine testing for liver function and anti-mitochondrial antibodies has increased the number of newly diagnosed patients with primary biliary cirrhosis (PBC). This study investigated the prognosis of asymptomatic PBC patients, focusing on age difference, to clarify its effect on the prognosis of PBC patients. The study was a systematic cohort analysis of 308 consecutive patients diagnosed with asymptomatic PBC. We compared prognosis between the elderly (55 years or older at the time of diagnosis) and the young patients (< 55 years). The mortality rate of the patients was also compared with that of an age- and gender-matched general population. The elderly patients showed a higher aspartate aminotransferase-to-platelet ratio, and lower alanine aminotransferase level than the young patients (P < 0.01 and P = 0.03, respectively). The two groups showed similar values for alkaline phosphatase and immunoglobulin M. Death in the young patients was more likely to be due to liver failure (71%), while the elderly were likely to die from other causes before the occurrence of liver failure (88%; P < 0.01), especially from malignancies (35%). The mortality rate of the elderly patients was not different from that of the age- and gender-matched general population (standardized mortality ratio, 1.1; 95% confidence interval, 0.6-1.7), although this rate was significantly higher than that of the young patients (P = 0.044). PBC often presents as more advanced disease in elderly patients than in the young. However, the mortality rate of the elderly patients is not different from that of an age- and gender-matched general population

    The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba

    Get PDF
    The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host–parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba)

    Management of Massive Arterial Hemorrhage After Pancreatobiliary Surgery: Does Embolotherapy Contribute to Successful Outcome?

    Get PDF
    Massive arterial hemorrhage is, although unusual, a life-threatening complication of major pancreatobiliary surgery. Records of 351 patients who underwent major surgery for malignant pancreatobiliary disease were reviewed in this series. Thirteen patients (3.7%) experienced massive hemorrhage after surgery. Complete hemostasis by transcatheter arterial embolization (TAE) or re-laparotomy was achieved in five patients and one patient, respectively. However, 7 of 13 cases ended in fatality, which is a 54% mortality rate. Among six survivors, one underwent selective TAE for a pseudoaneurysm of the right hepatic artery (RHA). Three patients underwent TAE proximal to the proper hepatic artery (PHA): hepatic inflow was maintained by successful TAE of the gastroduodenal artery in two and via a well-developed subphrenic artery in one. One patient had TAE of the celiac axis for a pseudoaneurysm of the splenic artery (SPA), and hepatic inflow was maintained by the arcades around the pancreatic head. One patient who experienced a pseudoaneurysm of the RHA after left hemihepatectomy successfully underwent re-laparotomy, ligation of RHA, and creation of an ileocolic arterioportal shunt. In contrast, four of seven patients with fatal outcomes experienced hepatic infarction following TAE proximal to the PHA or injury of the common hepatic artery during angiography. One patient who underwent a major hepatectomy for hilar bile duct cancer had a recurrent hemorrhage after TAE of the gastroduodenal artery and experienced hepatic failure. In the two patients with a pseudoaneurysm of the SPA or the superior mesenteric artery, an emergency re-laparotomy was required to obtain hemostasis because of worsening clinical status. Selective TAE distal to PHA or in the SPA is usually successful. TAE proximal to PHA must be restricted to cases where collateral hepatic blood flow exists. Otherwise or for a pseudoaneurysm of the superior mesenteric artery, endovascular stenting, temporary creation of an ileocolic arterioportal shunt, or vascular reconstruction by re-laparotomy is an alternative

    Type II fatty acid synthesis is essential only for malaria parasite late liver stage development

    Get PDF
    Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F, a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ, another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro. Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood

    Evolution of the Cytosolic Iron/Sulfur cluster Assembly machinery in Blastocystis sp. and other microbial eukaryotes

    Get PDF
    The Cytosolic Iron/Sulfur cluster Assembly (CIA) machinery is responsible for the assembly of cytosolic and nuclear iron/sulfur clusters, cofactors that are vital for all living cells. This machinery is uniquely found in eukaryotes and consists of at least eight proteins in opisthokont lineages such as animals and yeast. We sought to identify and characterize homologues of the CIA system proteins in the anaerobic stramenopile parasite Blastocystis sp. NandII strain. We identified transcripts encoding six of the components - Cia1, Cia2, MMS19, Nbp35, Nar1, and a putative Tah18 - and showed that the last three of them localized to the cytoplasm of the cell using immuno-fluorescence microscopy, immuno-electron microscopy and subcellular fractionation. We then used comparative genomic and phylogenetic approaches to investigate the evolutionary history of these proteins. While most Blastocystis homologues branch with their eukaryotic counterparts, the putative Blastocystis Tah18 seems to have a separate evolutionary origin and therefore possibly a different function. Furthermore, our phylogenomic analyses revealed that all eight CIA components described in opisthokonts originated before the diversification of extant eukaryotic lineages and were likely already present in the Last Eukaryotic Common Ancestor (LECA). Nbp35, Nar1 Cia1 and Cia2 proteins have been conserved during the subsequent evolutionary diversification of eukaryotes and are present in virtually all extant lineages, whereas the other CIA proteins have patchy phylogenetic distributions. Cia2 appears to be homologous to SufT, a component of the prokaryotic SUF system, making this the first reported evolutionary link between the CIA and any other Fe/S biogenesis pathway. All of our results suggest that the CIA machinery is an ubiquitous biosynthetic pathway in eukaryotes, but its apparent plasticity in composition raises questions regarding how it functions in non-model organisms and how it interfaces with various iron/sulfur cluster systems (i.e., ISC, NIF and/or SUF) found in eukaryotic cells

    Targeted Deletion of p73 in Mice Reveals Its Role in T Cell Development and Lymphomagenesis

    Get PDF
    Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia
    corecore