152 research outputs found

    Generation of Tactile Data from 3D Vision and Target Robotic Grasps

    Get PDF
    Tactile perception is a rich source of information for robotic grasping: it allows a robot to identify a grasped object and assess the stability of a grasp, among other things. However, the tactile sensor must come into contact with the target object in order to produce readings. As a result, tactile data can only be attained if a real contact is made. We propose to overcome this restriction by employing a method that models the behaviour of a tactile sensor using 3D vision and grasp information as a stimulus. Our system regresses the quantified tactile response that would be experienced if this grasp were performed on the object. We experiment with 16 items and 4 tactile data modalities to show that our proposal learns this task with low error.This work was supported in part by the Spanish Government and the FEDER Funds (BES-2016-078290, PRX19/00289, RTI2018-094279-B-100) and in part by the European Commission (COMMANDIA SOE2/P1/F0638), action supported by Interreg-V Sudoe

    Absence of a structural transition up to 40 Gpa in MgB2 and the relevance of magnesium non-stoichiometry

    Full text link
    We report measurements on MgB2 up to ~40GPa. Increasing pressure yields a monotonous decrease of the lattice parameters and of the c/a ratio, but no structural transition down to parameters smaller than those of AlB2. The transition superconducting temperature also decreases with temperature in a sample dependent way. The results are explained by an increase of the filling of the 2D pxy bands with pressure, the Mg stoichiometry determining the starting position of the Fermi level. Our measurements indicate that these hole bands are the relevant ones for superconductivity.Comment: submitted March 9th 2001, PRB accepte

    Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale

    Get PDF
    The equation of state of cubic boron nitride (cBN) has been determined to a maximum temperature of 3300 K at a simultaneous static pressure of up to more than 70 GPa. Ab initio calculations to 80 GPa and 2000 K have also been performed. Our experimental data can be reconciled with theoretical results and with the known thermal expansion at 1 bar if we assume a small increase in pressure during heating relative to that measured at ambient temperature. The present data combined with the Raman measurements we presented earlier form the basis of a high-temperature pressure scale that is good to at least 3300 K

    High pressure behavior of CsC8 graphite intercalation compound

    Get PDF
    International audienceThe high pressure phase diagram of CsC8 graphite intercalated compound has been investigated at ambient temperature up to 32 GPa. Combining X-ray and neutron diffraction, Raman and X- ray absorption spectroscopies, we report for the first time that CsC8, when pressurized, undergoes phase transitions around 2.0, 4.8 and 8 GPa. Possible candidate lattice structures and the transition mechanism involved are proposed. We show that the observed transitions involve the structural re- arrangement in the Cs sub-network while the distance between the graphitic layers is continuously reduced at least up to 8.9 GPa. Around 8 GPa, important modifications of signatures of the electronic structure measured by Raman and X-ray absorption spectroscopies evidence the onset of a new transition

    Fe–FeO and Fe–Fe<sub>3</sub>C melting relations at Earth's core–mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core

    Get PDF
    International audienceEutectic melting temperatures in the Fe–FeO and Fe–Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe–S and Fe–Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core–mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle

    Rotating tomography Paris-Edinburgh cell:a novel portable press for micro-tomographic 4-D imaging at extreme pressure/temperature/stress conditions

    Get PDF
    International audienceThis paper presents details of instrumental development to extend synchrotron X-ray microtomography techniques to in situ studies under static compression (high pressure), shear stress or the both conditions at simultaneous high temperatures. To achieve this, a new rotating tomography Paris–Edinburgh cell has been developed. This ultra-compact portable device easily and successfully adapted to various multi-modal synchrotron experimental set-up at ESRF, SOLEIL and DIAMOND is explained in detail. An in-depth description of proof of concept first experiments performed on a high resolution imaging beamline is then given, which illustrate the efficiency of the set-up and the data quality that can be obtained
    • …
    corecore