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Abstract—Tactile perception is a rich source of information for
robotic grasping: it allows a robot to identify a grasped object
and assess the stability of a grasp, among other things. However,
the tactile sensor must come into contact with the target object
in order to produce readings. As a result, tactile data can only
be attained if a real contact is made. We propose to overcome
this restriction by employing a method that models the behaviour
of a tactile sensor using 3D vision and grasp information as a
stimulus. Our system regresses the quantified tactile response
that would be experienced if this grasp were performed on the
object. We experiment with 16 items and 4 tactile data modalities
to show that our proposal learns this task with low error.

Index Terms—Robotic Perception, Tactile Feedback Estima-
tion, Tactile Data Generation, Tactile Perception, 3D Vision

I. INTRODUCTION

HUMANS perceive the multiple properties of objects and
surfaces, like stiffness, through their sense of touch.

Besides, we can estimate the physical attributes of objects by
simply looking at them. That is: our visual perception allows
us to approximate the feeling of touch. It is argued that our
brain builds statistical models that capture visual clues which
allow us to predict these properties [1]. We propose a method
that will provide robots with this skill, thus enabling them to
“feel” the tactile response of a grasp on an object. Our goal
is that of learning to regress tactile responses using 3D visual
perception and grasp information as a stimulus (see Fig. 1).

Tactile data are used for various tasks [2], like detecting
the contours of an object [3], estimating its motion within the
robotic hand [5] or calculating its orientation while grasped
[4]. Lately, some authors have begun exploring the localisation
and reconstruction of the pose of a target object using the
tactile sense only [6], [7], just as a human would do when
searching for an object in a box.

One of the most frequently researched areas is the clas-
sification of objects and textures [8]. When pursuing this
goal, tactile data are usually combined with visual information
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Fig. 1. We propose a method for learning to regress tactile data using 3D
vision and target robotic grasps.

such as RGB images. For example, Liu et al. [9] paired
features calculated from tactile and visual data. The authors
of [10] proposed a texture classification system that learnt a
joint latent space in which both modalities shared features.
Remarkably, Lin et al. [11] framed this task differently with
great results: they worked on recognising whether a pair of
visual and tactile observations belonged to the same object.

Tactile perception is also frequently combined with proprio-
ception for object recognition. Abderrahmane et al. [12] used
an anthropomorphic hand equipped with tactile sensors on its
fingertips for this task. The authors of [13] similarly presented
a learning framework using a robotic hand with tactile sensors
on its fingertips and palm. Luo et al. [14] built a dictionary
of 4D points that contained the 3D coordinates of touches
performed on objects and the corresponding tactile responses.
Their system then recognised objects using a modified Iterative
Closest Point (ICP) method.

Two other common tasks approached with tactile perception
are stability prediction and slip detection. For example, Dong
et al. [15] detected slippage by monitoring the motion of
contact points using an optical tactile sensor. The authors
of [16] predicted the stability of a grasp before lifting the
object using deep neural networks. Abd et al. [17] showed
that traditional signal processing methods could detect the
direction of slippage. The authors of [18] showed that deep
neural networks could distinguish directions of slippage by
learning spatio-temporal features. More recently, such features
have been learnt with soft hands and Inertial Measurement
Units (IMUs) [19]. The detection of the slip direction has also
been covered by combining tactile data with proprioception
[20], vision [21], [22] or all of them [23].

Finally, tactile data have also been used for servoing the
robot for carrying out tasks like: gently touching objects [24],
discovering the actions that leverage target tactile responses
[25], [26] or improving the quality of a grasp [27], [28].
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Overall, the relevance of tactile perception for robotic ma-
nipulation has been demonstrated. However, the exploitation
of tactile data has a serious flaw: it can be registered only
during a contact. In contrast, humans can estimate the feeling
of grasping an object by simply looking at it. Inspired by this,
we present a novel method for learning to generate tactile
responses. We provide our method with 3D point clouds and
grasp data, so it learns to model the behaviour of a tactile
sensor. This allows it to predict the stability of a grasp before
actually making contact with the object, even in the case of
using a robot without tactile sensors or in simulation.

II. ESTIMATING HAPTIC INTERACTION FROM VISION:
PREVIOUS WORK

In recent years, Pham et al. have worked on estimating force
from videos of humans manipulating objects. In [29], they
tracked a subject’s hand while manipulating a cube and esti-
mated the object’s kinematics. They used then Second-Order
Cone Programming (SOCP) to calculate the force that had to
be applied in order to reproduce the motion seen. Later, in [30],
the authors equipped test objects with measuring tools and
generated a database of videos of human hands manipulating
them. They employed Recurrent Neural Networks (RNNs) to
map the images and the measured kinematic features onto
forces. Although these works presented low-error systems,
they estimated forces for human hands actually performing
a manipulation task. In contrast, we carry out our work with
a robotic hand and estimate the tactile data prior to contact.

Few works in robotics literature cover the task of learning
to generate tactile responses from vision. Shin et al. [31]
worked on inferring force from videos of interactions between
items and a tool attached to a servo-motor. In order to
generate forces, the authors combined attention modules with
Convolutional Neural Networks (CNNs) and RNNs. This work
provided robust results for various objects, but the method still
required the tool to make a real contact with an object in order
to infer force.

Abderrahmane et al. [32] proposed generating tactile data
from semantic descriptions of objects. They provided 19
binary haptic adjectives, which included information about the
material and shape of the objects. A deconvolutional neural
network was then trained with this descriptor for producing
feature vectors in the tactile space. The authors improved
the performance of an object recognition system using these
vectors so it could handle new objects. However, it was
necessary to hand-engineer the descriptor and items had to
be recognised.

Recently, Hogan et al. [33] presented a regrasping strat-
egy driven by synthetically generated tactile responses. The
authors used the GelSight optical sensor, which registers
tactile images captured by an internal camera. These images
record the texture of the surface contacted. The authors used
translations of these images to simulate tactile images and pair
them with the movements of their gripper. They later assigned
a grasp quality score to the images generated, which resulted
in their system being able to find gripper adjustments that
improved this score. However, this approach still needed a real
grasp in order to register an initial reference tactile image.

Lee et al. [34] presented a cross-modal data generator
using Generative Adversarial Networks (GANs): their system
generated tactile data from visual perception and vice versa.
They trained it using tactile images acquired from single
touches with a GelSight sensor, and pictures of the scene taken
with a colour camera. Two generator networks were, therefore,
trained: one that produced tactile images given a picture of a
piece of fabric, and another that produced the picture of the
texture given the tactile image. Li et al. [35] trained two similar
networks using a different dataset: the authors recorded tactile
images and pictures of single touches on objects on a table.
In this case, the networks generated a tactile image given a
video sequence of the robot performing a touch on an object
in the scene, or a picture of the robot and the objects given
the tactile response and a reference initial picture.

These works with the GelSight provided great results in
the tactile data generation task. However, this sensor produces
images so these proposals are vision-to-vision models, so their
task is more closely related to computer vision than to haptics.
In contrast, we generate tactile data with the BioTac SP sensor,
which records pressure signals. Moreover, we carry out two-
fingered grasps rather than single touches. This is an important
difference because the response that a tactile sensor produces
from a single touch varies depending on: 1) the supporting
surface of the target object and 2) its pose with respect to that
support. A touch performed on the same spot on the same
object can produce different tactile feedbacks if carried out
on a solid table or a soft couch. It may also be different
if the touch movement is perpendicular to the supporting
surface or parallel to it. Grasps, however, have less variation:
the same two-fingered grasp performed on the same grasping
points on the same object produce similar tactile responses,
independently of the supporting surface of the object.

Our contributions are, therefore, summarised as follows:
1) We present a vision-to-tactile approach for the genera-

tion of tactile data using visual perception. We use 3D
point clouds since they can provide more information
about objects than RGB images.

2) We propose that grasp data should also be included
in the learning, thus enabling generated responses to
depend on the target object, the specific area on which
it would be contacted and the pose of the robotic hand.

3) We use grasps rather than single touches for the regis-
tration of tactile responses. Grasps are more useful for
robotic manipulation and they are less prone to varia-
tions in the tactile feedback which depend on external
factors like the environment.

4) A new dataset of 3D point clouds and real grasps is
released with this work, so researchers can investigate
further ways to learn to generate tactile perception.

III. ROBOTIC SYSTEM

We use the BioTac SP tactile sensor developed by Syn-
Touch [36]. It holds 24 electrodes distributed in an internal
core, which record signals from 4 emitters and measure the
impedance in the fluid between them and the elastic skin of the
sensor. During a contact, the greater the pressure experienced
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Fig. 2. BioTac SP, the tactile sensor used in this work (top-left) and rest of
the robotic setup. The circles on the sensor represent the electrodes, while
their colours represent different responses.

by the sensor, the lower the voltage values that are read by
the electrodes. The BioTac SP also provides a global pressure
measurement using a sensor in its base. The liquid inside
displaces during contact, pushing itself against this pressure
sensor. Although the BioTac SP measures other properties
like temperature changes, we use only the electrode readings
and the global pressure value in this work. Fig. 2 shows the
distribution of the electrodes and the experimental setup.

We have three BioTac SP sensors on a Shadow Dexterous
Hand [37], although we only use two of them in this work.
More precisely, we use the sensors on the middle finger MF
and the thumb TH. Hence, gripper-like grasps were performed
using this multi-fingered hand. It is mounted as the end effector
of a Mitsubishi PA10 robotic arm, an industrial manipulator
with 7 Degrees of Freedom (DoF). The arm is mounted on a
custom torso with its workspace in front of the robot, where
there is a table on which we place objects. Besides, we fix
in the world one Intel RealSense D415 depth camera, which
captures dense 3D point clouds of the scene. The point of view
of the camera provides the system with recordings from the
top of the table. We present in Fig. 2 this robotic setup.

All the component in our system run on Robotic Operating
System (ROS) [38], so we can read the camera stream and
the BioTac SP readings. We use position controllers provided
by the manufacturers to command the Shadow Hand and the
PA10 arm. Finally, trajectories are generated using MoveIt!
[39].

IV. METHODOLOGY

Our target task is to generate tactile readings that would be
registered by the BioTac SP sensors if a grasp were executed
on an object. We propose to train a supervised network with
3D point clouds of objects, desired grasp configurations and
target tactile responses. We identify three key questions: A)
how should we represent the object and the grasp?; B) what
should the output of the network be?, and C) what should
the architecture of such a network be? This section covers
our answers to these questions, which define our proposal.
We also describe the dataset of real grasps collected for
experimentation.

A. Visual Representation

We propose 3D point clouds for representing the object.
This type of structure represents the geometry of the object
better than a 2D image, which should be useful as regards
modelling the tactile response: areas with similar geometrical
shapes should produce similar forces on the tactile sensor
under similar grasp conditions. We segment the objects so that
clouds contain only the points that belong to them. Moreover,
we work only with 3D coordinates and colour channels. In
experimentation (Section V), we investigate the effects of these
features on our learning system. Note that we use a single
RGBD camera, so the point clouds contain a partial view of
the object. We worked under this constraint because it covers
a wide range of scenarios, like settings in which items are in
a wardrobe and capturing more views is not possible.

Using only a visual representation of the object might not
be sufficiently informative to allow the network to generate
accurate tactile responses. We propose to alleviate this by
including grasp data. We experiment with two grasp represen-
tations: 1) a coarse-grained representation ΘC = {g1, g2} that
contains the 3D coordinates of the two grasping points g1, g2
that would be contacted, and 2) a fine-grained representation
ΘF = {g1, g2, R} that also contains a rotation matrix R that
represents the pose of the wrist during the desired grasp. We
do not include the translation to the wrist because it is a robot
dependant value and it had no effects on the performance of
the system in early experiments.

B. Tactile Response

Two levels of granularity are identified for this task: in the
coarse version, the system has to learn to regress the global
pressure value, called DC pressure or PDC, which is obtained
from the pressure sensor on the base of the BioTac SP. There
is one value for each sensor: PDCmf and PDCth. In the
fine-grained problem, the system has to learn to regress the
electrodes readings, denoted as E in this work. There are 24
values for each sensor: Emf = {e1, e2, ..., e24} and Eth =
{e1, e2, ..., e24}.

The values provided by the BioTac SP are in custom discrete
units. Although it does not produce force values in Newtons,
there is a proved relationship between these custom units and
the force experienced [40]. We, therefore, work with these cus-
tom units directly, taking into account that higher forces mean
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Fig. 3. Architecture proposed as regards learning to regress tactile responses based on PointNet and fully connected layers. The same architecture can be
used to learn to generate single pressure values (PDC) or electrode (E) activations for one tactile sensor.

that the read values are closer to 0. In addition, the ranges of
values provided by each of the two data modalities – PDC
and E – are different. The discrete ranges of values found
empirically for these tactile modalities and our sensors are
specifically: PDCth ∈ [2500, 3400], PDCmf ∈ [1600, 2300],
Eth ∈ [100, 3600] and Emf ∈ [500, 3800]. Each sensor has
a slightly different sensitivity to contact owing to differences
in the amount of liquid inside the sensor itself. The sensors
consequently register readings with different ranges, even for
the same source of data.

C. Neural Learning
Our task is to generate the tactile responses that would be

registered by the BioTac SP sensor during a grasp of an item
without actually executing the grasp. For this purpose, we have
proposed an input representation made of a 3D point cloud
and a description of the grasp. As regards the output, we have
proposed PDC and E tactile modalities. In this section, we
describe the system that maps our inputs onto these outputs.

We propose a neural network based on PointNet [41] to
learn this task. We choose this network because it has per-
formed well in related tasks. PointNet processes point clouds
in which each point has a set of features, like 3D coordinates
and colour channels. Convolutions are employed to calculate a
vector X with 1024 features, which represents the input point
cloud for the target task. We use these features as input for a
set of Fully-Connected (FC) layers with Rectified Linear Units
(ReLUs), with the exception of the last one, which provides
the regression results, as shown in Fig. 3.

In order to include grasp data, we concatenate extra values
to the X feature vector depending on the grasp representation:
6 values are used for ΘC which are the 3D coordinates of
the two grasping points, while 15 values are used for ΘF ,
which are those 6 coordinates plus 9 values for the axes of
the rotation matrix R. As a result, the first fully-connected
layer after the PointNet feature calculator receives a vector
with either 1030 or 1039 values depending on the grasp
representation. An example of an architecture trained with ΘF

is shown in Fig. 3. Experiments with more variations of this
architecture are shown in Section V.

D. Data Transformation
Our dataset, described in Section IV-E, holds clouds with

sizes that range from 814 to 6525 points. However, every cloud

must be of the same size in order to train the PointNet feature
calculator. Thereby, we downsample our clouds. As a side
benefit, processing smaller clouds requires less computation
power and speeds up the training, although it may result in
a loss of information. This is dealt with by sampling points
uniformly without replacements online, such that every time a
cloud is seen during training, its sampled version is different.
We have experimented with various target sizes, which are
discussed in Section V.

We also experiment with three normalisation techniques in
order to process the input of the learning system:

1) Unit Sphere Normalisation. We normalise point clouds
to the unit sphere whose centre is at the cloud’s centroid.
That is, if c is the centroid of the cloud C, we transform
the reference frame of every point p ∈ C by simply
subtracting the centroid to it: pt = p − c, where pt is
the transformed version of p. As a result, the centroid
c becomes the origin of the new reference frame. We
then scale points to the range [0, 1] using the Euclidean
distance φ to the furthest point p from the centroid c, so
the normalised point is pn = pt/φ. Grasp data is also
normalised using this method, for example: gin = (gi−
c)/φ, where gin is the i-th grasping point normalised.

2) Min-Max Scaling. Each feature of the cloud and the
grasp data is scaled using the minimum and maximum
values of the features of the same sample: pn = (p −
min(C))/(max(C) − min(C)). We then scale each
feature to the range [−1, 1].

3) Transform to Wrist Frame. We use the rotation matrix
R from the grasp data and an empty translation vector
in order to form a transformation matrix. This trans-
formation matrix is then applied to all the points in
the cloud and to the grasping points. As a result, the
Cartesian coordinates in our samples are defined with
respect to a reference frame whose centre is the camera,
but rotated as regards the orientation of the wrist. Since
this normalisation does not affect colour, we scale this
channel to range [−1, 1].

As mentioned in Section IV-B, our tactile modalities are
in different ranges of discrete values. In order to improve the
convergence of the learning method, we scale them as well.
This is done by applying the Min-Max Scaling to these data
sources using the ranges described in Section IV-B.
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Fig. 4. Some of the steps in the sequence followed in order to collect data: (A) preparing the robot, (B) recording a point cloud and generating a grasp, (C)
calculating a trajectory, (D) grasping the actual object, (E) Emf and (F) Eth responses of electrodes for both sensors, where colour represents pressure.

Finally, we explore a data augmentation technique in order
to potentially increase the variability of inputs. This is done
by rotating point clouds and grasps using random angles over
their axes. The resulting values of the coordinates are different,
but the samples maintained their spatial relationships. We
define a rotation matrix for each axis: R~x uses an angle α in
order to rotate around the ~x axis, R~y uses an angle β in order
to rotate around ~y, and R~z uses the angle γ in order to rotate
around ~z. Rotations over the three axes are executed online
during training, so angles α, β, γ are randomly generated for
each sample. We show the effects of this augmentation with
various angles later in experimentation.

E. Data Collection

Data was collected executing grasp trials, as shown in Fig. 4.
GeoGrasp [42], [43] was used to compute grasping points on
the 3D point clouds. This method finds grasps on unknown
objects using a 3D point cloud with a partial view, which
fits our setup. GeoGrasp tends to find grasps around the
cloud’s centroid. In order to avoid fitting our learning to this
type of grasps only, we approximated the object’s main axis
using Principal Component Analysis (PCA) and then randomly
moved the grasps along this axis. This resulted in grasps being
performed all over the objects’ surface (Fig. 5)

We saved from each grasp trial: the 3D point cloud of
the object C, the grasp configuration ΘF and the tactile
readings at the moment of contact, so a sample is a tuple
S = 〈C,ΘF , PDCmf , PDCth, Emf , Eth〉. The robotic fin-
gers were closed so they would come into contact with the
object on the computed grasping points without exceeding
the torque limits of the joints. Note that this does not mean
that grasps were executed with a constant force for all the
items. We recorded grasps with different tactile responses (Fig.
6) but the torque limits were our upper bound in order to
avoid breaking the robot. We followed these steps to collect a
sample:

1) Move the robot away from the table to allow the camera
to get a clean view of the scene.

2) Place a single object on the table with a random orien-
tation, as shown in Fig. 5.

3) Capture a raw point cloud C using the depth camera.
4) Send it to the modified GeoGrasp in order to obtain a

grasp configuration ΘF = {g1, g2, R}.
5) Save the segmented cloud C and the grasp data ΘF .

Fig. 5. Example of various poses seen from the camera and grasps for two
of the objects in the set during the collection of data for this work.
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Fig. 6. Histogram of PDCmf values for two items in our dataset showing
that different pressure values have been recorded.

6) Calculate the Inverse Kinematics (IK) and plan a trajec-
tory so that the robot reaches the target grasp.

7) Execute the trajectory.
8) After making contact, save the general pressure PDC

and the electrodes values E from both fingers.
9) Release the grasp and repeat from step 1.

Grasps were executed on a collection of 16 objects (Fig. 7).
These objects were selected because they represent various
geometrical shapes and also different degrees of stiffness. For
our training set, we used 8 items from the YCB item set
[44], plus 4 soft items that we added because YCB objects
are mostly rigid. Soft items were included to increase the
variability in the sensed tactile responses, since these items
deform under contact. We specifically recorded 1000 samples
for each of the following objects: 4 cylinder-like objects (can
of Pringles, can of coffee, bottle of bleach, can of Campbell’s
soup), 4 box-like objects (box of Cheezits, box of sugar, can of
Spam, piece of wood) and 4 soft objects (stuffed Minion, flat
ball, sponge, stuffed volley ball). Therefore, our training set is
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Fig. 7. Collection of 16 objects used in our experiments.

not biased towards neither a single geometrical primitive nor
rigid objects only. In addition, we recorded a set containing
500 samples for each of the following 4 novel items: plastic
toy train, plastic toy drill, stuffed rugby ball and leather shoe.
These new objects were selected because they have novel
shapes (e.g. plastic toy drill from YCB set) and degrees of
stiffness (e.g. leather shoe). In total, our sets contain 12000
and 2000 samples respectively1.

V. EXPERIMENTS

The proposed learning network was trained using Root
Mean Square Error (RMSE) as loss function, where yt is the
target tactile value, ŷt is the generated value and n is the
number of samples in the batch:

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (1)

We split the training samples (12000) into two balanced
sets: 75% were used for training and the remaining 25% for
the test set, ensuring that each of the 12 objects were equally
represented within the sets. Experiments on the 9000 training
samples were carried out using 5-fold cross validation in order
to extract better error estimates and to avoid overfitting [45].
Batch normalisation was also applied to improve performance.
We used the Adam optimiser with a learning rate equal to 0.01
and the batch size was equal to 10, owing to our dataset size
and our hardware. Finally, the experiments were run on a PC
with an Intel i7-8700K CPU at 3.7GHz, 32 GiB DDR4 RAM
and two GeForce GTX 1080Ti GPU, and running Ubuntu
16.04, Python 3.6.9, CUDA 10.0 and PyTorch 1.2.0.

We worked with the PDCth data in order to find the
best configuration of architecture hyperparameters (Section
V-A), input representation (Section V-B), normalisation and
augmentation methods (Section V-C). Since the BioTac SP
sensors have slightly different behaviour and data ranges,
we trained one network for each sensor and tactile modality
for our final test experiments (Sections V-D and V-E). This

1Data available at: https://github.com/yayaneath/vision2tactile

Fig. 8. Evolution of the average loss rate (RMSE) as regard the generation
of PDCth values with 5-fold cross-validation.

TABLE I
AVERAGE 5-FOLD CROSS-VALIDATION RMSE AS REGARDS THE

GENERATION OF PDCth VALUES FOR OUR ARCHITECTURES. WE OMIT
THE FINAL LAYER THAT PRODUCES THE REGRESSED OUTPUT.

Architecture Fully-Connected ReLUs Loss (RMSE ± STD)

FC1 [1024] 0.02598 ± 0.00043
FC2 [1024, 512] 0.02586 ± 0.00084
FC3 [1024, 512, 256] 0.02570 ± 0.00076
FC4 [1024, 512, 256, 128] 0.02744 ± 0.00069
FC5 [1024, 512, 256, 128, 64] 0.02652 ± 0.00092
FC6 [1024, 512, 256, 128, 64, 32] 0.02660 ± 0.00062

means that one network is trained with PDCth values, another
with PDCmf , another with Eth and a fourth one with Emf .
However, we used the same architecture and hyperparameters
for all of them, based on the results obtained from PDCth.

A. Architecture and Hyperparameters

We first trained a basic architecture for tuning the number
of epochs. Results are shown in Fig. 8. This was obtained by
training a network with a PointNet feature calculator and three
FC layers with ReLUs (FC3 in Table I). The input were point
clouds with only 3D coordinates, downsampled to 800 points,
and no grasp data. We used the PDCth data from the 9000
training samples and ran the training loop for 1000 epochs
using 5-fold cross-validation. As can be seen, loss began to
converge at 500 epochs. However, the change in loss between
250 epochs and 500 epochs is less than 0.01 points. We,
therefore, carry out the remaining of our experiments using
250 epochs in order to avoid overfitting.

We then experimented with the FC layers after the PointNet
feature calculator. Six architectures were tested with varying
depths and sizes, as detailed in Table I. These results were
obtained by training each architecture on the 9000 PDCth

samples with 5-fold cross-validation for 250 epochs. The
shallowest network FC1 underfits the problem. As we in-
crease the complexity of the architecture, the error decreases.
However, from FC4 and above, the error increases again. As
a result, we use FC3 as our base architecture in the remaining
experiments. This architecture is shown in Fig. 3.
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TABLE II
AVERAGE 5-FOLD CROSS-VALIDATION RMSE AS REGARDS THE

GENERATION OF PDCth VALUES BY CLOUD SIZE. TIME REQUIRED TO
PROCESS A SINGLE EPOCH IS ALSO SHOWN.

Cloud Size Loss (RMSE ± STD) Time/epoch (s)

250 0.03010 ± 0.00105 8
500 0.02790 ± 0.00115 14
750 0.02717 ± 0.00134 21

B. Visual and Grasp Representations

We first experimented with the number of points in the
downsampled clouds. This is a parameter of the PointNet
feature calculator that must be fixed and equal to every cloud.
Since the smallest cloud in our dataset held 814 points, we
limited ourselves to a maximum of 750 points. Three different
sizes were tested: 250, 500 and 750. Table II shows the results
obtained for 9000 PDCth samples. As the number of points
used is reduced, the loss increases, which is a consequence of
losing more information during the sampling. Hence, the best
performance should be obtained from larger clouds. However,
increasing their size is also detrimental to the execution time:
a single epoch using clouds with 750 points takes 162.5%
more time than if the clouds have 250 points. In the remaining
experiments, we downsample the clouds to 750 points to
maintain as much information as possible. We do not use larger
sizes because that would require inventing points for smaller
clouds and it would also significantly increase execution times.

Six combinations of visual and grasp representations were
tested as input for our system:

1) XYZ, which is a cloud in which points contain only 3D
coordinates, so a single sample has the shape 750× 3.

2) RGB, which extends XYZ by adding RGB colour chan-
nels, meaning that a single sample has the shape 750×6.

3) XYZCont, which extends XYZ with grasp contact data
(points g1 and g2), so that a single sample contains a
cloud with shape 750× 3 and a vector with shape 1× 6
that concatenates the 3D coordinates of the two contact
points.

4) RGBCont, which extends RGB with grasp contact data,
meaning that a single sample contains a cloud with shape
750× 6 and a vector with shape 1× 6 that concatenates
the 3D coordinates of the two contact points.

5) XYZPose, which extends XYZCont with pose information
(rotation matrix R of the wrist), so that a single sample
contains a cloud with shape 750 × 3 and a vector with
shape 1×15 that concatenates the 3D coordinates of the
two contact points and the three axis defining R.

6) RGBPose, which extends RGBCont with pose informa-
tion, such that a single sample contains a cloud with
shape 750 × 6 and a vector with shape 1 × 15 that
concatenates the 3D coordinates of the two contact
points and the three axis defining R.

We used the 9000 PDCth samples to train the FC3
architecture for 250 epochs, using 5-fold cross-validation on
these inputs. The results are shown in Fig. 9. We expected
that the addition of colour data to XYZ would always result
in lower errors, but the RGB configuration yielded higher

Fig. 9. Average 5-fold cross-validation RMSE as regards the generation of
PDCth values using different input representations.

TABLE III
AVERAGE 5-FOLD CROSS-VALIDATION RMSE AS REGARDS THE

GENERATION OF PDCth VALUES USING NORMALISATION METHODS.

Normalisation Loss (RMSE ± STD)

None 0.01859 ± 0.00065
Unit Sphere 0.01183 ± 0.00073

Min-Max Scaling 0.01141 ± 0.00076
Wrist Frame 0.02260 ± 0.00100

values. This could have been owing to an increased complexity
in the input for our task: since our items have different
coloured textures over the entirety of their surfaces, the use
of RGB representation increases the variability in the input.
In comparison, learning from a simpler input such as XYZ
allows the learner to fit the task further. A similar result can be
found when checking XYZCont and RGBCont. This suggests
that adding colour information does not guarantee an improved
performance.

In contrast, XYZCont and RGBCont provided lower error
rates than XYZ and RGB. Hence, adding contact information
improves the performance of the tactile generator. The best
results were obtained by adding the rotation of the wrist.
This confirms that adding grasp-related information improves
performance in the case of our tactile data generation task.
Consequently, we run remaining experiments using RGBPose.

C. Normalisation and Augmentation

Table III lists the results obtained from experiments carried
out to compare normalisation methods. As can be seen, the
use of a normalisation method always lowered the error,
with the exception of the Wrist Frame technique. It could
have performed less well because this method transforms
points to a reference frame, but it does not really normalise
their value ranges. The best results were obtained using Mix-
Max scaling, which reduced error to almost 22%. Thereby,
following experiments use this normalisation.

We experimented with four ranges of angles for testing
data augmentation of the input data with rotations. That
is, we trained one network randomly rotating the Cartesian
coordinates of the input between −45◦ and 45◦, another was
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TABLE IV
AVERAGE 5-FOLD CROSS-VALIDATION RMSE AS REGARDS THE

GENERATION OF PDCth VALUES FOR EACH AUGMENTATION METHOD.
ROTATION WITH ±0◦ MEANS NO AUGMENTATION.

Rotation Angle Loss (RMSE ± STD))

0◦ 0.01141 ± 0.00076
[−45◦, 45◦] 0.02026 ± 0.00073
[−90◦, 90◦] 0.02545 ± 0.00094

[−135◦, 135◦] 0.02788 ± 0.00109
[−180◦, 180◦] 0.02671 ± 0.00073

trained with rotations in the range [−90◦, 90◦], a third one was
trained with the range [−135◦, 135◦] and the last was trained
with the range [−180◦, 180◦]. In contrast to our expectations,
increasing the variability of the input using this method was
counter-productive, since validation error increased by more
than 77%. This could be the result of increasing the complexity
of the input and introducing noise, thus misleading the network
as regards learning a correct representation for our task.

D. Test Set

We discovered from previous experiments that best results
were obtained by training a FC3 network with downsampled
clouds of 750 points for 250 epochs using the RGBPose input
representation, normalised using Min-Max Scaling. In this
experiment, we trained this system again but we evaluated
it with the remaining 3000 samples for each tactile modality:
PDCth, PDCmf , Eth, Emf . We show in Fig. 10 the average
results obtained from 5 independent iterations of training with
9000 samples and then testing with these 3000 testing samples.

We obtained an average RMSE equal to 0.05496 upon
generating PDCth values. This value, when scaled back to the
discrete range of this modality, equals 49 units in its custom
values. In context, this can be considered a low error, since
values for this modality are in the discrete range [2500, 3400].
As for PDCmf , the error obtained (0.06170) equals 43 units
scaled back to the range of this modality ([1600, 2300]), which
can also be considered low in this context. As can be seen,
our proposal produces lower error PDCth than PDCmf

responses. Learning to generate PDCth might be easier owing
to the orientation of the thumb on the Shadow Hand: it is
slightly turned in, like a human thumb, meaning that our
gripper-like grasps could not completely touch items with this
finger. Instead, the thumb mostly contacted them with one
side of its surface. This might have translated into similar
general forces experienced by the thumb sensor, thus reducing
the complexity of learning from these data.

With regard to Eth responses, we obtained an average
RMSE equal to 0.06099, which are 213 units in the discrete
range of values of this modality ([100, 3600]). In the case of
Emf , we obtained an average RMSE equal to 0.05922, or 195
in its modality range ([500, 3800]). Our proposal yielded lower
error rates for the middle finger than for the thumb. This could
be related to the orientation of the fingers mentioned above.
The middle finger made contact with the objects with its whole
surface. This might have resulted in unique activations of the
electrodes: that is, the Emf responses were more characteristic

Fig. 10. Average RMSE from 5 runs of training and regressing each tactile
modality using the test set (3000 samples of known objects). For PDC, this
is the average error of 1 pressure value regressed on each run. For E, this is
the average error of 24 electrodes values regressed on each run.

depending on the grasp and the item. If you touch the tip of
a fork with your fingertip, you will probably distinguish the
tines and the spaces between them. However, if you touch
the fork with just a side of your fingertip, it might be more
difficult to distinguish it from the tip of a spoon if all you
feel is a solid surface. This is the way in which the thumb
made contact with items, so its electrodes could not encode
much information depending on the object and the grasp. As
a result, it was more complex learning from Eth than Emf

data because its data were less discriminative.
We conclude that learning to generate tactile data is a

task with different degrees of complexity depending on the
modality used and the way in which the BioTac SP makes
contact with target objects. On the one hand, if the sensor
contacts the manipulated object with its whole surface, then
its electrodes seem to register a discriminative signature of it
such that our system learns to generate low-error responses.
However, the general pressure recorded is less specific and,
therefore, more difficult to generate given visual and grasp
data. On the other hand, if the sensor barely comes into contact
with part of its surface, then the electrodes cannot encode
a discriminative signature. Consequently, producing general
pressure values becomes less complex.

E. Novel Objects

We further verified the generalisation capabilities of the
proposed system to new items by training our best configura-
tion on the whole training set (12000 samples) and evaluating
it with the set of 4 novel items (2000 samples). We show
in Fig. 11 the average RMSE obtained from 5 independent
iterations of training and then testing on this set. We ran
various iterations in order to extract conclusions from various
trials rather than a single lucky run.

The average error for PDCth increased from 0.05496 (49
units) with the test set to 0.08289 (74 units) with the set of
novel objects, which is an increase of 51%. The PDCmf error
increased by 73% from 0.06170 (43 units) to 0.10650 (74
units) with this new set. As for Eth, it increased by 43%
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Fig. 11. Average RMSE obtained after 5 runs of training and regressing
each tactile modality using the novel set (2000 samples of novel objects). For
PDC, this is the average error of 1 pressure value regressed on each run.
For E, this is the average error of 24 electrodes values regressed on each run.

from 0.06099 (213 units) to 0.08724 (305 units). Finally, Emf

increased by 74% from 0.05922 (195 units) to 0.10317 (340
units). These results demonstrate that our system had more
difficulty processing the novel items, since the loss of each
data modality increased by at least 43%, peaking at 74%.

Increased error rates were expected, since generalisation
to novel samples is a challenge in deep neural networks.
Moreover, the objects selected for our novel set were different
as regards their shape (e.g. plastic toy drill) and materials
(e.g. leather shoe). It is, however, possible to identify a trend:
the error rates increased by similar percentages for the data
modalities concerning the same finger. The increase in error as
regards generating PDC and E values for the thumb are 51%
and 43%, respectively. These increases are 73% and 74% for
the same modalities for the middle finger. Producing readings
for this finger might have been more difficult because newer
tactile patterns might have been recorded with these novel
items. In contrast, since the thumb continued to contact items
with the same side of its fingertip, these novel items did not
produce completely different tactile patterns.

In addition, the differences in the loss between data modal-
ities for the same finger had a similar trend as that of the
test set. That is, producing E values for the thumb provided
higher error rates than producing PDC for that same finger.
This can be verified in the results obtained for the test set
(Fig. 10) and the novel set (Fig. 11). In the case of the middle
finger, generating E values provided lower error rates than
generating PDC values. This confirms that generating tactile
data with the BioTac SP is a task with different degrees
of complexity. This depends on the modality of data used
and the way in which the sensor establishes contact with
objects. According to our results, when the sensor makes
contact with the whole of its surface, discriminative patterns
are recorded by the electrodes, which lowers the complexity
of producing E values when compared to PDC. However, if
the sensor contacts objects with one side of its surface, these
discriminative patterns are not that clear in the electrodes, and
generating PDC becomes less complex in comparison.

VI. LIMITATIONS

The major limitation of our work is the unstable behaviour
of the BioTac SP. These sensors are highly responsive to a
wide range of contacts and forces. However, two sensors do
not provide exactly the same numeric values, nor do they
behave identically. There are slight differences as regards in
the amount of liquid inside of them owing to their construction,
and this has a high impact on the responses provided. In addi-
tion, the ranges of values are different from sensor to sensor.
As a result, tactile patterns detected on one sensor could not
be found on other sensors, thus limiting the transferability of
our models.

A second limitation of our proposal is the ability to visually
capture tactile clues. Using 3D point clouds as the only
description of the item might not be sufficient to predict
accurate tactile responses. For example, a can made of steel
and a can made of cardboard would produce different contact
responses. However, their geometries are the same and they
may have similar colours, if painted. We are, therefore, limited
as regards the amount of information processed about the
object. Nevertheless, if the item is previously recognised, we
could include in the learning pipeline a vector of characteris-
tics describing it, as Abderrahmane et al. [32] showed in their
work. Then, our system would receive more information about
the object.

Finally, another factor affecting the difficulty of this task is
the robotic hand used and, therefore, the grasp configuration.
In our case, we used the BioTac SP sensors on the middle
finger and thumb of a Shadow Dexterous hand. The tactile
responses generated from these fingers were different because
they were oriented differently with respect to the contacted
objects. As a result, we have not approached one problem,
but four instead: the generation of global pressure values and
electrodes responses for the middle finger and for the thumb
separately. We have shown that each data modality on each
finger configures a task with a different degree of complexity.

VII. CONCLUSION

This work presents one of the first approaches for the
generation of tactile responses using 3D visual perception and
grasp configuration data. We propose to learn to regress tactile
data from two BioTac SP tactile sensors using a neural network
based on PointNet. Our system uses 3D point clouds, including
Cartesian coordinates and colour channels, and data from
two-fingered grasps in order to model the behaviour of our
tactile sensors. Two sources of data are considered: the global
pressure value PDC, which is a single number; and electrodes
E, which are 24 values that are related owing to their vicinity
inside the sensor. Therefore, we cover a regression task.

In experimentation, we used 12 objects (12000 samples)
to find the best architecture for our task and 4 novel items
(2000 samples) to verify the generalisation capabilities of our
proposal with new objects. Our experiments have proved that it
is possible to regress tactile responses by combining 3D point
clouds with grasp-related data like contact points and the pose
of the tool. As a result, our system generates responses with
low error values when compared to the ranges of values of
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each modality. This tactile generator could be applied to find
grasp candidates on seen objects or to enrich the input of an
object detector, thus providing an extra perception modality.

We conclude that generating tactile data with the BioTac SP
is a task with different degrees of complexity. This complexity
depends on the modality of the data used and the way in which
the sensor comes into contact with objects. According to our
results, when the entire surface of the sensor makes contact,
then discriminative patterns are recorded by the electrodes,
which lowers the complexity of producing E values when
compared to PDC. However, if only a side of its surface
comes into contact with objects, these discriminative patterns
are not that clear in the electrodes, so generating PDC be-
comes less complex in comparison. Our work is consequently
limited by the way in which the Shadow Hand configures its
fingers in order to make contact with items.

In future work, we would like to record more data on new
items, since we are using deep learning networks which are
known for being data hungry models. We also plan to explore
ways to exploit unlabelled data: 3D point clouds and grasp
configurations with no target tactile responses, which are easy
and fast to collect. Moreover, this work paves the way towards
developing a grasp generator that will improve the stability
of the candidate grasps by using this system as a means to
measure their quality. Finally, we plan to experiment with
synthetic data in order to verify whether the models learnt for
the sensor can be transferred from a real system to a simulated
environment, or whether our data can be increased by using
this synthetic information.
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des Recherches) from Université Blaise Pascal,
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