270 research outputs found

    Predictive Analytics Supporting Labor Market Success: A Career Explorer for Job Seekers and Workforce Professionals in Michigan

    Get PDF
    Career Explorer provides customized career exploration tools for workforce development staff and job seekers in Michigan. There are separate Career Explorer modules for mediated staff services and self-service by job seekers. The system was developed by the Michigan Center for Data and Analytics in collaboration with the W.E. Upjohn Institute for Employment Research and Michigan Works! Southwest. It was funded by the U.S. Department of Labor’s Office of Workforce Investment and the Schmidt Futures foundation’s Data for the American Dream (D4AD) project. In this paper, we describe specifications of the models behind the frontline-staff-mediated version of Career Explorer, which are based on program administrative data, applying data-science methods for predictive analytics. We also describe the self-service Career Explorer, which provides customized labor market information based on published Bureau of Labor Statistics data. Career Explorer became an active feature of Michigan’s online reemployment-services system in June 2021

    Simple inhibitors of histone deacetylase activity that combine features of short-chain fatty acid and hydroxamic acid inhibitors

    Get PDF
    Butyric acid and trichostatin A (TSA) are anti-cancer compounds that cause the upregulation of genes involved in differentiation and cell cycle regulation by inhibiting histone deacetylase (HDAC) activity. In this study we have synthesized and evaluated compounds that combine the bioavailability of short-chain fatty acids, like butyric acid, with the bidentate binding ability of TSA. A series of analogs were made to examine the effects of chain length, simple aromatic cap groups, and substituted hydroxamates on the compounds\u27 ability to inhibit rat-liver HDAC using a fluorometric assay. In keeping with previous structure-activity relationships, the most effective inhibitors consisted of longer chains and hydroxamic acid groups. It was found that 5-phenylvaleric hydroxamic acid and 4-benzoylbutyric hydroxamic acid were the most potent inhibitors with IC50\u27s of 5 microM and 133 microM respectively

    Increasing outdoor host-seeking in Anopheles gambiae over 6 years of vector control on Bioko Island.

    Get PDF
    BACKGROUND: Vector control through indoor residual spraying (IRS) has been employed on Bioko Island, Equatorial Guinea, under the Bioko Island Malaria Control Project (BIMCP) since 2004. This study analyses the change in mosquito abundance, species composition and outdoor host-seeking proportions from 2009 to 2014, after 11 years of vector control on Bioko Island. METHODS: All-night indoor and outdoor human landing catches were performed monthly in the Bioko Island villages of Mongola, Arena Blanca, Biabia and Balboa from 2009 to 2014. Collected mosquitoes were morphologically identified and a subset of Anopheles gambiae sensu lato (s.l.) were later identified molecularly to their sibling species. Mosquito collection rates, species composition and indoor/outdoor host-seeking sites were analysed using generalized linear mixed models to assess changes in mosquito abundance and behaviour. RESULTS: The overall mosquito collection rate declined in each of the four Bioko Island villages. Anopheles coluzzii and Anopheles melas comprised the An. gambiae s.l. mosquito vector population, with a range of species proportions across the four villages. The proportion of outdoor host-seeking An. gambiae s.l. mosquitoes increased significantly in all four villages with an average increase of 58.8 % [57.9, 59.64 %] in 2009 to 70.0 % [67.8, 72.0 %] in 2014. Outdoor host-seeking rates did not increase in the month after an IRS spray round compared to the month before, suggesting that insecticide repellency has little impact on host-seeking behaviour. CONCLUSION: While vector control on Bioko Island has succeeded in substantial reduction in overall vector biting rates, populations of An. coluzzii and An. melas persist. Host-seeking behaviour has changed in these An. gambiae s.l. populations, with a shift towards outdoor host-seeking. During this study period, the proportion of host-seeking An. gambiae s.l. caught outdoors observed on Bioko Island increased to high levels, exceeding 80 % in some locations. It is possible that there may be a genetic basis underlying this large shift in host-seeking behaviour, in which case outdoor feeding could pose a serious threat to current vector control programmes. Currently, the BIMCP is preparing for this potential challenge by testing source reduction as a complementary control effort that also targets outdoor transmission

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×10−5\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore