182 research outputs found

    HABITATTITUDE™: GETTING A BACKBONE ABOUT THE PET RELEASE PATHWAY

    Get PDF
    Many people would not consider their family complete without a pet. Unfortunately, for some pet owners, circumstances arise that prevent them from being able to properly care for their companions and pet abandonment has become one of the most common pathways of vertebrate species introduction. It is also one of the most challenging pathways to address once the animals become established, eradication and control programs face significant public scrutiny and are often challenged by “animal rights” groups. Prevention measures are thus the key to minimizing the size and impacts of the “pet release pathway.” Habitattitude™ is a proactive campaign designed and implemented by the Pet Industry Joint Advisory Council and partners to prevent the introduction of unwanted pets into natural systems. The campaign has three components: (1) educating consumers to make wise pet choices, (2) providing resources to enable high standards in animal care and maintenance, and (3) encouraging pet owners to choose among several alternatives to the release of their pets if problems do arise. Habitattitude™ messages are being promoted in pet stores, product advertisements, industry trade shows, and industry-relevant magazines

    Report of the Topical Group on Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities for Snowmass 2021

    Full text link
    The mechanism(s) driving the early- and late-time accelerated expansion of the Universe represent one of the most compelling mysteries in fundamental physics today. The path to understanding the causes of early- and late-time acceleration depends on fully leveraging ongoing surveys, developing and demonstrating new technologies, and constructing and operating new instruments. This report presents a multi-faceted vision for the cosmic survey program in the 2030s and beyond that derives from these considerations. Cosmic surveys address a wide range of fundamental physics questions, and are thus a unique and powerful component of the HEP experimental portfolio.Comment: Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021); Topical Group Report for CF06 (Cosmic Frontier Topical Group on Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilitie

    Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic–carbonate sediments: Mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran

    Get PDF
    The Upper Jurassic Mozduran Formation with a thickness of 420 m at the type locality is the most important gas-bearing reservoir in NE Iran. It is mainly composed of limestone, dolostone with shale and gypsum interbeds that grade into coarser siliciclastics in the easternmost part of the basin. Eight stratigraphic sections were studied in detail in south of the Agh-Darband area. These analyses suggest that four carbonate facies associations and three siliciclastic lithofacies were deposited in shallow marine to shoreline environments, respectively. Cementation, compaction, dissolution, micritization, neomorphism, hematitization, dolomitization and fracturing are diagenetic processes that affected these sediments.Stable isotope variations of δ18O and δ13C in carbonate rocks show two different trends. High depletion of δ18O and low variation of δ13C probably reflect increasing temperatures during burial diagenesis, while the higher depletion in carbon isotope values with low variations in oxygen isotopes are related to fresh water flushing during meteoric diagenesis. Negative values of carbon isotopes may have also resulted from organic matter alteration during penetration of meteoric water. Fe and Mn enrichment with depletion of δ18O also supports the contention that alteration associated with higher depletion in carbon isotope values with low variations in oxygen isotopes took place during meteoric diagenesis. The presence of bright luminescence indicates redox conditions during precipitation of calcite cement

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∟24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∟27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Apathy is associated with executive functioning in first episode psychosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The underlying nature of negative symptoms in psychosis is poorly understood. Investigation of the relationship between the different negative subsymptoms and neurocognition is one approach to understand more of the underlying nature. Apathy, one of the subsymptoms, is also a common symptom in other brain disorders. Its association with neurocognition, in particular executive functioning, is well documented in other brain disorders, but only studied in one former study of chronic patients with schizophrenia. This study investigates the association between apathy and neurocognitive functioning in patients with first episode psychosis (FEP), with the hypothesis that apathy is more associated with tests representing executive function than tests representing other neurocognitive domains.</p> <p>Methods</p> <p>Seventy-one FEP patients were assessed with an extensive neuropsychological test battery. Level of apathy was assessed with the abridged Apathy Evaluation Scale (AES-C-Apathy).</p> <p>Results</p> <p>AES-C-Apathy was only significantly associated with tests from the executive domain [Semantic fluency (r = .37, p < .01), Phonetic fluency (r = .25, p < .05)] and working memory [Letter Number Span (r = .26; p =< .05)]; the first two representing the initiation part of executive function. Confounding variables such as co-occuring depression, positive symptoms or use of antipsychotic medication did not significantly influence the results.</p> <p>Conclusion</p> <p>We replicated in FEP patients the relationship between apathy and executive functioning reported in another study for chronic patients with schizophrenia. We also found apathy in FEP to have the same relationship to executive functioning, as assessed with the Verbal fluency tests, as that reported in patients with other brain disorders, pointing to a common underlying nature of this symptom across disorders.</p

    Dark Energy Survey year 3 results: point spread function modelling

    Get PDF
    We introduce a new software package for modelling the point spread function (PSF) of astronomical images, called PIFF (PSFs In the Full FOV), which we apply to the first three years (known as Y3) of the Dark Energy Survey (DES) data. We describe the relevant details about the algorithms used by PIFF to model the PSF, including how the PSF model varies across the field of view (FOV). Diagnostic results show that the systematic errors from the PSF modelling are very small over the range of scales that are important for the DES Y3 weak lensing analysis. In particular, the systematic errors from the PSF modelling are significantly smaller than the corresponding results from the DES year one (Y1) analysis. We also briefly describe some planned improvements to PIFF that we expect to further reduce the modelling errors in future analyses

    Reproductive Flexibility: Genetic Variation, Genetic Costs and Long-Term Evolution in a Collembola

    Get PDF
    In a variable yet predictable world, organisms may use environmental cues to make adaptive adjustments to their phenotype. Such phenotypic flexibility is expected commonly to evolve in life history traits, which are closely tied to Darwinian fitness. Yet adaptive life history flexibility remains poorly documented. Here we introduce the collembolan Folsomia candida, a soil-dweller, parthenogenetic (all-female) microarthropod, as a model organism to study the phenotypic expression, genetic variation, fitness consequences and long-term evolution of life history flexibility. We demonstrate that collembola have a remarkable adaptive ability for adjusting their reproductive phenotype: when transferred from harsh to good conditions (in terms of food ration and crowding), a mother can fine-tune the number and the size of her eggs from one clutch to the next. The comparative analysis of eleven clonal populations of worldwide origins reveals (i) genetic variation in mean egg size under both good and bad conditions; (ii) no genetic variation in egg size flexibility, consistent with convergent evolution to a common physiological limit; (iii) genetic variation of both mean reproductive investment and reproductive investment flexibility, associated with a reversal of the genetic correlation between egg size and clutch size between environmental conditions ; (iv) a negative genetic correlation between reproductive investment flexibility and adult lifespan. Phylogenetic reconstruction shows that two life history strategies, called HIFLEX and LOFLEX, evolved early in evolutionary history. HIFLEX includes six of our 11 clones, and is characterized by large mean egg size and reproductive investment, high reproductive investment flexibility, and low adult survival. LOFLEX (the other five clones) has small mean egg size and low reproductive investment, low reproductive investment flexibility, and high adult survival. The divergence of HIFLEX and LOFLEX could represent different adaptations to environments differing in mean quality and variability, or indicate that a genetic polymorphism of reproductive investment reaction norms has evolved under a physiological tradeoff between reproductive investment flexibility and adult lifespan

    Science-Driven Optimization of the LSST Observing Strategy

    Get PDF
    The Large Synoptic Survey Telescope is designed to provide an unprecedented optical imaging dataset that will support investigations of our Solar System, Galaxy and Universe, across half the sky and over ten years of repeated observation. However, exactly how the LSST observations will be taken (the observing strategy or "cadence") is not yet finalized. In this dynamically-evolving community white paper, we explore how the detailed performance of the anticipated science investigations is expected to depend on small changes to the LSST observing strategy. Using realistic simulations of the LSST schedule and observation properties, we design and compute diagnostic metrics and Figures of Merit that provide quantitative evaluations of different observing strategies, analyzing their impact on a wide range of proposed science projects. This is work in progress: we are using this white paper to communicate to each other the relative merits of the observing strategy choices that could be made, in an effort to maximize the scientific value of the survey. The investigation of some science cases leads to suggestions for new strategies that could be simulated and potentially adopted. Notably, we find motivation for exploring departures from a spatially uniform annual tiling of the sky: focusing instead on different parts of the survey area in different years in a "rolling cadence" is likely to have significant benefits for a number of time domain and moving object astronomy projects. The communal assembly of a suite of quantified and homogeneously coded metrics is the vital first step towards an automated, systematic, science-based assessment of any given cadence simulation, that will enable the scheduling of the LSST to be as well-informed as possible
    • …
    corecore