241 research outputs found

    Relative rates of B meson decays into psi(2S) and J/psi mesons

    Get PDF
    We report on a study of the relative rates of B meson decays into psi(2S) and J/psi mesons using 1.3 fb^-1 of pbar p collisions at sqrt(s) = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We observe the channels B^0_s -> psi(2S)phi, B^0_s -> J/psi phi, B^+/- -> psi(2S) K^+/-, and B^+/- -> J/psi K^+/- and we measure the relative branching fractions for these channels to be B(B^0_s -> psi(2S)phi)/B(B^0_s -> J/psi phi) = 0.55 +/- 0.11 (stat) +/- 0.07 (syst) +/- 0.06 (B), B(B^+/- -> psi(2S) K^+/-)/B(B^+/- -> J/psi K^+/-) = 0.65 +/- 0.04 (stat) +/- 0.03 (syst) +/- 0.07 (B) where the final error corresponds to the uncertainty in the J/psi and psi(2S) branching ratio into two muons.Comment: Published in Phys. Rev. D - Rapid Communicatio

    Ligand Binding Study of Human PEBP1/RKIP: Interaction with Nucleotides and Raf-1 Peptides Evidenced by NMR and Mass Spectrometry

    Get PDF
    Background Human Phosphatidylethanolamine binding protein 1 (hPEBP1) also known as Raf kinase inhibitory protein (RKIP), affects various cellular processes, and is implicated in metastasis formation and Alzheimer's disease. Human PEBP1 has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown. Methods/Findings In the present study, we investigated human PEBP1 by NMR to determine the binding site of four different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the determination of the affinity constants KD for different ligands. Native mass spectrometry was used as an alternative method for measuring KD values. Conclusions/Significance Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20°C to pH 7.5/NaCl 100 mM/30°C, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those within the pocket seem to be required for interaction with Raf-1.METASU

    A deep spectromorphological study of the γ\gamma-ray emission surrounding the young massive stellar cluster Westerlund 1

    Get PDF
    Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy is a prime candidate for studying this hypothesis. While the very-high-energy γ\gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. We aim to identify the physical processes responsible for the γ\gamma-ray emission around Westerlund 1 and thus to better understand the role of massive stellar clusters in the acceleration of Galactic CRs. Using 164 hours of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the γ\gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. We detected large-scale (2\sim 2^\circ diameter) γ\gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with γ\gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and is uniform across the entire source region. We did not find a clear correlation of the γ\gamma-ray emission with gas clouds as identified through H I and CO observations. We conclude that, of the known objects within the region, only Westerlund 1 can explain the bulk of the γ\gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable, and discussed in detail. (abridged)Comment: 15 pages, 9 figures. Corresponding authors: L. Mohrmann, S. Ohm, R. Rauth, A. Specoviu

    Detection of extended gamma-ray emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales > 2 deg poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 deg in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8±0.7)×1012(2.8\pm0.7)\times10^{-12} cm2^{-2}s1^{-1}TeV1^{-1} at 1 TeV is obtained within a 1 deg radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D0=7.61.2+1.5×1027D_0 = 7.6^{+1.5}_{-1.2} \times 10^{27} cm2^2s1^{-1}, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.Comment: 16 pages, 15 figures, 7 tables. Accepted for publication in Astronomy & Astrophysic

    H.E.S.S. follow-up observations of GRB221009A

    Full text link
    GRB221009A is the brightest gamma-ray burst ever detected. To probe the very-high-energy (VHE, >>\!100 GeV) emission, the High Energy Stereoscopic System (H.E.S.S.) began observations 53 hours after the triggering event, when the brightness of the moonlight no longer precluded observations. We derive differential and integral upper limits using H.E.S.S. data from the third, fourth, and ninth nights after the initial GRB detection, after applying atmospheric corrections. The combined observations yield an integral energy flux upper limit of ΦUL95%=9.7×1012 ergcm2s1\Phi_\mathrm{UL}^{95\%} = 9.7 \times 10^{-12}~\mathrm{erg\,cm^{-2}\,s^{-1}} above Ethr=650E_\mathrm{thr} = 650 GeV. The constraints derived from the H.E.S.S. observations complement the available multiwavelength data. The radio to X-ray data are consistent with synchrotron emission from a single electron population, with the peak in the SED occurring above the X-ray band. Compared to the VHE-bright GRB190829A, the upper limits for GRB221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow. Even in the absence of a detection, the H.E.S.S. upper limits thus contribute to the multiwavelength picture of GRB221009A, effectively ruling out an IC dominated scenario.Comment: 10 pages, 4 figures. Accepted for publication in APJL. Corresponding authors: J. Damascene Mbarubucyeye, H. Ashkar, S. J. Zhu, B. Reville, F. Sch\"ussle

    TeV flaring activity of the AGN PKS 0625-354 in November 2018

    Full text link
    Most γ\gamma-ray detected active galactic nuclei are blazars with one of their relativistic jets pointing towards the Earth. Only a few objects belong to the class of radio galaxies or misaligned blazars. Here, we investigate the nature of the object PKS 0625-354, its γ\gamma-ray flux and spectral variability and its broad-band spectral emission with observations from H.E.S.S., Fermi-LAT, Swift-XRT, and UVOT taken in November 2018. The H.E.S.S. light curve above 200 GeV shows an outburst in the first night of observations followed by a declining flux with a halving time scale of 5.9h. The γγ\gamma\gamma-opacity constrains the upper limit of the angle between the jet and the line of sight to 10\sim10^\circ. The broad-band spectral energy distribution shows two humps and can be well fitted with a single-zone synchrotron self Compton emission model. We conclude that PKS 0625-354, as an object showing clear features of both blazars and radio galaxies, can be classified as an intermediate active galactic nuclei. Multi-wavelength studies of such intermediate objects exhibiting features of both blazars and radio galaxies are sparse but crucial for the understanding of the broad-band emission of γ\gamma-ray detected active galactic nuclei in general.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    H.E.S.S. follow-up of BBH merger events

    Get PDF
    We present here, follow-up observations of four Binary black hole BBH eventsperformed with the High Energy Stereoscopic System (H.E.S.S.) in the Very HighEnergy (VHE) gamma-ray domain during the second and third LIGO/Virgoobservation runs. Detailed analyses of the obtained data did not showsignificant VHE emission. We derive integral upper limit maps considering ageneric E2E^{-2} source spectrum in the most sensitive H.E.S.S energy intervalranging from 1 to 10 TeV. We also consider Extragalactic Background Lightabsorption effects and derive integral upper limits over the full accessibleenergy range. We finally derive upper limits of the VHE luminosity for eachevent and compare them with the expected VHE emission from GRBs. Thesecomparisons allow us to assess the H.E.S.S. gravitational wave follow-upstrategies. For the fourth GW observing run O4, we do not expect tofundamentally alter our observing strategy, and will continue to prioritize skycoverage like for the previous runs<br

    Detection of extended TeV emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs

    Revisiting the PeVatron candidate MGRO J1908+06 with an updated H.E.S.S. analysis

    Get PDF
    Detecting and studying galactic gamma-ray sources emitting very-high energy photons sheds light on the acceleration and propagation of cosmic rays presumably created in these sources. Currently, there are few sources emitting photons with energies exceeding 100 TeV. In this work we revisit the unidentified source MGRO J1908+06, initially detected by Milagro, using an updated H.E.S.S. dataset and analysis pipeline. The vicinity of the source contains a supernova remnant and pulsars as well as molecular clouds. This makes the identification of the primary source(s) of galactic cosmic rays as well as the nature of the gamma-ray emission challenging, especially in light of the recent HAWC and LHAASO detection of the high energy tail of its spectrum. Exploiting the better angular resolution as compared to particle detectors, we investigate the morphology of the source as well as its spectral properties
    corecore