5,722 research outputs found

    Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR

    Full text link
    We present electron spin resonance data of Ti3+^{3+} (3d1d^1) ions in single crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is predominantly occupied and owing to the occurrence of orbital order a linear spin chain forms along the crystallographic b axis. This result corroborates recent theoretical LDA+U calculations of the band structure. The temperature dependence of the parameters of the resonance signal suggests a strong coupling between spin and lattice degrees of freedom and gives evidence for a transition to a nonmagnetic ground state at 67 K.Comment: revised version, accepted for publication in Phys. Rev. B, Rapid Com

    Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring

    Full text link
    Photodetachment thermometry on a beam of OH−^- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH−^- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX supplement with 12 pages, 3 figures and 3 tables. This article has been accepted by Physical Review Letter

    Holographic Imaging of Crowded Fields: High Angular Resolution Imaging with Excellent Quality at Very Low Cost

    Full text link
    We present a method for speckle holography that is optimised for crowded fields. Its two key features are an iterativ improvement of the instantaneous Point Spread Functions (PSFs) extracted from each speckle frame and the (optional) simultaneous use of multiple reference stars. In this way, high signal-to-noise and accuracy can be achieved on the PSF for each short exposure, which results in sensitive, high-Strehl re- constructed images. We have tested our method with different instruments, on a range of targets, and from the N- to the I-band. In terms of PSF cosmetics, stability and Strehl ratio, holographic imaging can be equal, and even superior, to the capabilities of currently available Adaptive Optics (AO) systems, particularly at short near-infrared to optical wavelengths. It outperforms lucky imaging because it makes use of the entire PSF and reduces the need for frame selection, thus leading to higher Strehl and improved sensitivity. Image reconstruction a posteriori, the possibility to use multiple reference stars and the fact that these reference stars can be rather faint means that holographic imaging offers a simple way to image large, dense stellar fields near the diffraction limit of large telescopes, similar to, but much less technologically demanding than, the capabilities of a multi-conjugate adaptive optics system. The method can be used with a large range of already existing imaging instruments and can also be combined with AO imaging when the corrected PSF is unstable.Comment: Accepted for publication in MNRAS on 15 Nov 201

    Hysteresis of Electronic Transport in Graphene Transistors

    Full text link
    Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection and chemically driven applications.Comment: 13 pages, 6 Figure

    Biogenic carbonate mercury and marine temperature records reveal global influence of Late Cretaceous Deccan Traps

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155784/1/Meyer_et_al_2019_Biogenic_carbonate_mercury.pd

    Maturation of the Language Network: From Inter- to Intrahemispheric Connectivities

    Get PDF
    Language development must go hand-in-hand with brain maturation. Little is known about how the brain develops to serve language processing, in particular, the processing of complex syntax, a capacity unique to humans. Behavioral reports indicate that the ability to process complex syntax is not yet adult-like by the age of seven years. Here, we apply a novel method to demonstrate that the basic neural basis of language, as revealed by low frequency fluctuation stemming from functional MRI data, differs between six-year-old children and adults in crucial aspects. Although the classical language regions are actively in place by the age of six, the functional connectivity between these regions clearly is not. In contrast to adults who show strong connectivities between frontal and temporal language regions within the left hemisphere, children's default language network is characterized by a strong functional interhemispheric connectivity, mainly between the superior temporal regions. These data indicate a functional reorganization of the neural network underlying language development towards a system that allows a close interplay between frontal and temporal regions within the left hemisphere

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9±2)×1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012

    TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

    Full text link
    The TESLA Technical Design Report Part III: Physics at an e+e- Linear ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full quality figures can be obtained from http://tesla.desy.de/tdr. Editors - R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa

    Authentication of the R06E Fruit Bat Cell Line

    Get PDF
    Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore