1,805 research outputs found

    Relativistic virialization in the Spherical Collapse model for Einstein-de Sitter and \Lambda CDM cosmologies

    Full text link
    Spherical collapse has turned out to be a successful semi-analytic model to study structure formation in different DE models and theories of gravity. Nevertheless, the process of virialization is commonly studied on the basis of the virial theorem of classical mechanics. In the present paper, a fully generally-relativistic virial theorem based on the Tolman-Oppenheimer-Volkoff (TOV) solution for homogeneous, perfect-fluid spheres is constructed for the Einstein-de Sitter and \Lambda CDM cosmologies. We investigate the accuracy of classical virialization studies on cosmological scales and consider virialization from a more fundamental point of view. Throughout, we remain within general relativity and the class of FLRW models. The virialization equation is set up and solved numerically for the virial radius, y_{vir}, from which the virial overdensity \Delta_{V} is directly obtained. Leading order corrections in the post-Newtonian framework are derived and quantified. In addition, problems in the application of this formalism to dynamical DE models are pointed out and discussed explicitly. We show that, in the weak field limit, the relative contribution of the leading order terms of the post-Newtonian expansion are of the order of 10^{-3}% and the solution of Wang & Steinhardt (1998) is precisely reproduced. Apart from the small corrections, the method could provide insight into the process of virialization from a more fundamental point of view.Comment: 15 pages, 2 figure

    Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef

    Get PDF
    Coral reefs are facing major global and local threats due to climate change-inducedincreases in dissolved inorganic carbon (DIC) and because of land-derived increases inorganic and inorganic nutrients. Recent research revealed that high availability of labile dissolvedorganic carbon (DOC) negatively affects scleractinian corals. Studies on the interplayof these factors, however, are lacking, but urgently needed to understand coral reeffunctioning under present and near future conditions. This experimental study investigatedthe individual and combined effects of ambient and high DIC (pCO2 403 ?atm/ pHTotal 8.2and 996 ?atm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 ?mol L-1, backgroundDOC concentration of 83 ?mol L-1) availability on the physiology (net and gross photosynthesis,respiration, dark and light calcification, and growth) of the scleractinian coral Acroporamillepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. HighDIC availability did not affect photosynthesis, respiration and light calcification, but significantlyreduced dark calcification and growth by 50 and 23%, respectively. High DOC availabilityreduced net and gross photosynthesis by 51% and 39%, respectively, but did notaffect respiration. DOC addition did not influence calcification, but significantly increasedgrowth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis,light calcification, respiration or growth, but significantly decreased dark calcificationwhen compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrationsmay lead to reduced accretion and growth of reefs dominated by Acropora thatunder elevated DOC concentrations will likely exhibit reduced primary production rates, ultimatelyleading to loss of hard substrate and reef erosion. It is therefore important to considerthe potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios,as multiple rather than single factors influence key physiological processes in coralreefs

    A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions.

    Get PDF
    Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 1

    Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function

    Get PDF
    Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ~10 minutes total duration) in healthy adults (n=3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30Hz) desynchronization in all subjects. This is the first demonstration of studying human cognition with OPMs and not only highlights this technology’s utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children

    Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function

    Get PDF
    Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ~10 minutes total duration) in healthy adults (n=3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30Hz) desynchronization in all subjects. This is the first demonstration of studying human cognition with OPMs and not only highlights this technology’s utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children

    Moving magnetoencephalography towards real-world applications with a wearable system

    Get PDF
    Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders

    Safe vs. Fair: A formidable trade-off in tackling climate change

    Get PDF
    Global warming requires a response characterized by forward-looking management of atmospheric carbon and respect for ethical principles. Both safety and fairness must be pursued, and there are severe trade-offs as these are intertwined by the limited headroom for additional atmospheric CO2 emissions. This paper provides a simple numerical mapping at the aggregated level of developed vs. developing countries in which safety and fairness are formulated in terms of cumulative emissions and cumulative per capita emissions respectively. It becomes evident that safety and fairness cannot be achieved simultaneously for strict definitions of both. The paper further posits potential global trading in future cumulative emissions budgets in a world where financial transactions compensate for physical emissions: the safe vs. fair tradeoff is less severe but remains formidable. Finally, we explore very large deployment of engineered carbon sinks and show that roughly 1,000 Gt CO2 of cumulative negative emissions over the century are required to have a significant effect, a remarkable scale of deployment. We also identify the unexplored issue of how such sinks might be treated in sub-global carbon accounting

    CD27− B-Cells Produce Class Switched and Somatically Hyper-Mutated Antibodies during Chronic HIV-1 Infection

    Get PDF
    Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID) in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27−IgA+ and CD27−IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27− cells from patients. Taken together, these results show that during HIV-1 infection, CD27− B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.</p

    Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at √s=8 TeV

    Get PDF
    Results are reported of a general search for pair production of heavy resonances decaying to pairs of hadronic jets in events with at least four jets. The study is based on up to 19.4 fb(-1) of integrated luminosity from proton-proton collisions at a center-of-mass energy of 8 TeV, recorded with the CMS detector at the LHC. Limits are determined on the production of scalar top quarks (top squarks) in the framework of R-parity violating supersymmetry and on the production of color-octet vector bosons (colorons). First limits at the LHC are placed on top squark production for two scenarios. The first assumes decay to a bottom quark and a light-flavor quark and is excluded for masses between 200 and 385 GeV, and the second assumes decay to a pair of light-flavor quarks and is excluded for masses between 200 and 350 GeV at 95% confidence level. Previous limits on colorons decaying to light-flavor quarks are extended to exclude masses from 200 to 835 GeV
    corecore