64,355 research outputs found
Development of dry coal feeders
Design and fabrication of equipment of feed coal into pressurized environments were investigated. Concepts were selected based on feeder system performance and economic projections. These systems include: two approaches using rotating components, a gas or steam driven ejector, and a modified standpipe feeder concept. Results of development testing of critical components, design procedures, and performance prediction techniques are reviewed
Actors, actions, and initiative in normative system specification
The logic of norms, called deontic logic, has been used to specify normative constraints for information systems. For example, one can specify in deontic logic the constraints that a book borrowed from a library should be returned within three weeks, and that if it is not returned, the library should send a reminder. Thus, the notion of obligation to perform an action arises naturally in system specification. Intuitively, deontic logic presupposes the concept of anactor who undertakes actions and is responsible for fulfilling obligations. However, the concept of an actor has not been formalized until now in deontic logic. We present a formalization in dynamic logic, which allows us to express the actor who initiates actions or choices. This is then combined with a formalization, presented earlier, of deontic logic in dynamic logic, which allows us to specify obligations, permissions, and prohibitions to perform an action. The addition of actors allows us to expresswho has the responsibility to perform an action. In addition to the application of the concept of an actor in deontic logic, we discuss two other applications of actors. First, we show how to generalize an approach taken up by De Nicola and Hennessy, who eliminate from CCS in favor of internal and external choice. We show that our generalization allows a more accurate specification of system behavior than is possible without it. Second, we show that actors can be used to resolve a long-standing paradox of deontic logic, called the paradox of free-choice permission. Towards the end of the paper, we discuss whether the concept of an actor can be combined with that of an object to formalize the concept of active objects
Majoron emission in muon and tau decays revisited
In models where the breaking of lepton number is spontaneous a massless
Goldstone boson, the Majoron (), appears. We calculate the theoretically
allowed range for the branching ratios of Majoron emitting charged lepton
decays, such as Br() and Br(), in a
supersymmetric model with spontaneous breaking of R-parity. Br() is
maximal in the same region of parameter space for which the lightest neutralino
decays mainly invisibly. A measurement of Br() thus potentially
provides information on R-parity violation complementary to accelerator
searches. We also briefly discuss existing bounds and prospects for future
improvements on the Majoron coupling to charged leptons.Comment: 9 pages, 4 figure
A Reanalysis of the Carbon Abundance in the Translucent Cloud toward HD 24534
We have reanalyzed the Goddard High Resolution Spectrograph data set
presented by Snow et al. which contains the interstellar intersystem C II]
2325A line through the translucent cloud toward HD 24534 (X Persei). In
contrast to the results of Snow et al., we clearly detect the C II] feature at
the 3-sigma confidence level and measure a C^+ column density of 2.7 +/- 0.8 x
10^17 cm^-2. Accounting for the C I column density along the line of sight, we
find 10^6 C/H = 106 +/- 38 in the interstellar gas toward this star. This
gas-phase carbon-to-hydrogen ratio suggests that slightly more carbon depletion
may be occurring in translucent as compared to diffuse clouds. The average
diffuse-cloud C/H, however, is within the 1-sigma uncertainty of the
measurement toward HD 24534. We therefore cannot rule out the possibility that
the two cloud types have comparable gas-phase C/H, and therefore comparable
depletions of carbon.Comment: 9 pages, 3 figures, to appear in the Astrophysical Journal Letter
Specifying ODP computational objects in Z
The computational viewpoint contained within the Reference Model of Open Distributed Processing (RM-ODP) shows how collections of objects can be configured within a distributed system to enable interworking. It prescribes certain capabilities that such objects are expected to possess and structuring rules that apply to how these objects can be configured with one another. This paper highlights how the specification language Z can be used to formalise these capabilities and the associated structuring rules, thereby enabling specifications of ODP systems from the computational viewpoint to be achieved
Pair-factorized steady states on arbitrary graphs
Stochastic mass transport models are usually described by specifying hopping
rates of particles between sites of a given lattice, and the goal is to predict
the existence and properties of the steady state. Here we ask the reverse
question: given a stationary state that factorizes over links (pairs of sites)
of an arbitrary connected graph, what are possible hopping rates that converge
to this state? We define a class of hopping functions which lead to the same
steady state and guarantee current conservation but may differ by the induced
current strength. For the special case of anisotropic hopping in two dimensions
we discuss some aspects of the phase structure. We also show how this case can
be traced back to an effective zero-range process in one dimension which is
solvable for a large class of hopping functions.Comment: IOP style, 9 pages, 1 figur
Atomic Transport in Dense, Multi-Component Metallic Liquids
Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with
incoherent, inelastic neutron scattering. As compared to simple liquids, liquid
PdNiCuP is characterized by a dense packing with a packing fraction above 0.5.
The intermediate scattering function exhibits a fast relaxation process that
precedes structural relaxation. Structural relaxation obeys a time-temperature
superposition that extends over a temperature range of 540K. The mode-coupling
theory of the liquid to glass transition (MCT) gives a consistent description
of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT
scaling laws extrapolate to a critical temperature Tc at about 20% below the
liquidus temperature. Diffusivities derived from the mean relaxation times
compare well with Co diffusivities from recent tracer diffusion measurements
and diffsuivities calculated from viscosity via the Stokes-Einstein relation.
In contrast to simple metallic liquids, the atomic transport in dense, liquid
PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a
q^{-2} dependence of the mean relaxation times at intermediate q and a
vanishing isotope effect as a result of a highly collective transport
mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as
fast as in simple liquids at the melting point. However, the difference in the
underlying atomic transport mechanism indicates that the diffusion mechanism in
liquids is not controlled by the value of the diffusivity but rather by that of
the packing fraction
On the observability of bow shocks of Galactic runaway OB stars
Massive stars that have been ejected from their parent cluster and
supersonically sailing away through the interstellar medium (ISM) are
classified as exiled. They generate circumstellar bow shock nebulae that can be
observed. We present two-dimensional, axisymmetric hydrodynamical simulations
of a representative sample of stellar wind bow shocks from Galactic OB stars in
an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3.
Independently of their location in the Galaxy, we confirm that the infrared is
the most appropriated waveband to search for bow shocks from massive stars.
Their spectral energy distribution is the convenient tool to analyze them since
their emission does not depend on the temporary effects which could affect
unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks
generated by high-mass (~40 Mo) runaway stars yield H fluxes which
could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The
brightest bow shock nebulae are produced in the denser regions of the ISM. We
predict that bow shocks in the field observed at Ha by means of
Rayleigh-sensitive facilities are formed around stars of initial mass larger
than about 20 Mo. Our models of bow shocks from OB stars have the emission
maximum in the wavelength range 3 <= lambda <= 50 micrometer which can be up to
several orders of magnitude brighter than the runaway stars themselves,
particularly for stars of initial mass larger than 20 Mo.Comment: 13 pages, 12 figures. Accepted to MNRAS (2016
ANALYSIS OF THE RISK MANAGEMENT PROPERTIES OF GRAZING CONTRACTS VERSUS FUTURES AND OPTION CONTRACTS
A stochastic budget simulator and generalized stochastic dominance are used to compare the risk management properties of grazing contracts to futures and option contracts. The results show that the risks of backgrounding feeder cattle are reduced significantly for pasture owners in a grazing contract. However, the risks of the cattle owner in a grazing contract are not significantly reduced. The results show that generally risk adverse pasture owners prefer grazing contracts to integrated production when traditional hedging is used to manage price risks. In addition, grazing contracts compare favorably with put option contracts for some pasture owners.Backgrounding, Futures contracts, Grazing contracts, Options contracts, Risk management, Risk and Uncertainty,
- …