154 research outputs found

    Progress towards quantum simulating the classical O(2) model

    Full text link
    We connect explicitly the classical O(2)O(2) model in 1+1 dimensions, a model sharing important features with U(1)U(1) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a 87^{87}Rb and 41^{41}K Bose-Bose mixture.Comment: 7 pages, 6 figures, uses revtex, new material and one author added, as to appear in Phys. Rev.

    Naturalness Versus Supersymmetric Non-renormalization Theorems

    Full text link
    We give an intuitive proof of a new non-renormalization theorem in supersymmetric field theories. It applies both perturbatively and non-perturbatively. The superpotential is not renormalized in perturbation theory but receives non-perturbative corrections. However, these non-perturbative corrections are {\it not} generic functions of the fields consistent with the symmetries. Certain invariant terms are not generated. This violation of naturalness has applications to dynamical supersymmetry breaking.Comment: 14 pages, RU-93-4

    Phases of Chiral Gauge Theories

    Full text link
    We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories.Comment: 23 pages, 2 figures, ReVTeX, improved forma

    D-type supersymmetry breaking and brane-to-brane gravity mediation

    Get PDF
    We revisit the issue of gravitational contributions to soft masses in five-dimensional sequestered models. We point out that, unlike for the case of F-type supersymmetry breaking, for D-type breaking these effects generically give positive soft masses squared for the sfermions. This drastically improves model building. We discuss the phenomenological implications of our result.Comment: 16 pages. Typos corrected, minor clarifications. To be published in Phys. Lett.

    Gaugino condensation scale of one family hidden SU(5)', dilaton stabilization and gravitino mass

    Get PDF
    The hidden SU(5)' with one family, 10 and 5-bar, breaks supersymmetry dynamically. From the effective Lagrangian approach, we estimate the hidden sector gaugino candensation scale, the dilaton stabilization and the resulting gravitino mass. In some models, this gravitino mass can be smaller than the previous naive estimate. Then, it is possible to raise the SU(5)' confining scale above 10^{13} GeV.Comment: 8 pages, 4 figure

    R Symmetry Breaking Versus Supersymmetry Breaking

    Full text link
    We point out a connection between R symmetry and \susy\ breaking. We show that the existence of an R symmetry is a necessary condition for \susy\ breaking and a spontaneously broken R symmetry is a sufficient condition provided two conditions are satisfied. These conditions are: {\it genericity}, \ie\ the effective Lagrangian is a generic Lagrangian consistent with the symmetries of the theory (no fine tuning), and {\it calculability}, \ie\ the low energy theory can be described by a supersymmetric Wess-Zumino effective Lagrangian without gauge fields. All known models of dynamical supersymmetry breaking possess such a spontaneously broken R symmetry and therefore contain a potentially troublesome axion. However, we use the fact that genericity is {\it not} a feature of supersymmetric theories, even when nonperturbative renormalization is included, to show that the R symmetry can in many cases be explicitly broken without restoring supersymmetry and so the axion can be given an acceptably large mass.Comment: 20 pages, UCSD/PTH 93-27, RU-93-4

    Exotic Non-Supersymmetric Gauge Dynamics from Supersymmetric QCD

    Get PDF
    We extend Seiberg's qualitative picture of the behavior of supersymmetric QCD to nonsupersymmetric models by adding soft supersymmetry breaking terms. In this way, we recover the standard vacuum of QCD with NfN_f flavors and NcN_c colors when Nf<NcN_f < N_c. However, for Nf≥NcN_f \geq N_c, we find new exotic states---new vacua with spontaneously broken baryon number for Nf=NcN_f = N_c, and a vacuum state with unbroken chiral symmetry for Nf>NcN_f > N_c. These exotic vacua contain massless composite fermions and, in some cases, dynamically generated gauge bosons. In particular Seiberg's electric-magnetic duality seems to persist also in the presence of (small) soft supersymmetry breaking. We argue that certain, specially tailored, lattice simulations may be able to detect the novel phenomena. Most of the exotic behavior does not survive the decoupling limit of large SUSY breaking parameters.Comment: 36 pages, latex + 2 figures (uuencoded ps

    Bs→KℓνB_s \to K \ell\nu form factors with 2+1 flavors

    Full text link
    Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors f0f_0 and f+f_+ for the semileptonic Bs→KℓνB_s \rightarrow K \ell\nu decay. A total of six ensembles with lattice spacing from ≈0.12\approx0.12 to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass ml′m'_l is one-tenth the strange quark mass ms′m'_s. At the intermediate lattice spacing, the ratio ml′/ms′m'_l/m'_s ranges from 0.05 to 0.2. The valence bb quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element ∣Vub∣|V_{ub}|.Comment: 8 pages, 6 figures, to appear in the Proceedings of Lattice 2017, June 18-24, Granada, Spai
    • …
    corecore