457 research outputs found

    Dosimetric Performance and Planning/Delivery Efficiency of a Dual-Layer Stacked and Staggered MLC on Treating Multiple Small Targets: A Planning Study Based on Single-Isocenter Multi-Target Stereotactic Radiosurgery (SRS) to Brain Metastases.

    Get PDF
    Purpose: To evaluate the dosimetric performance and planning/delivery efficiency of a dual-layer MLC system for treating multiple brain metastases with a single isocenter. Materials and Methods: 10 patients each with 6-10 targets with volumes from 0.11 to 8.57 cc, and prescription doses from 15 to 24 Gy, were retrospectively studied. Halcyon has only coplanar delivery mode. Halcyon V1 MLC modulates only with the lower layer at 1 cm resolution, whereas V2 MLC modulates with both layers at an effective resolution of 0.5 cm. For each patient five plans were compared varying MLC and beam arrangements: the clinical plan using multi-aperture dynamic conformal arc (DCA) and non-coplanar arcs, Halcyon-V1 using coplanar-VMAT, Halcyon-V2 using coplanar-VMAT, HDMLC-0.25 cm using coplanar-VMAT, and HDMLC-0.25 cm using non-coplanar-VMAT. All same-case plans were generated following the same planning protocol and normalization. Conformity index (CI), gradient index (GI), V12Gy, V6Gy, V3Gy, and brain mean dose were compared. Results: All VMAT plans met clinical constraints for critical structures. For targets with diameter \u3c 1 cm, Halcyon plans showed inferior CI among all techniques. For targets with diameter \u3e1 cm, Halcyon VMAT plans had CI similar to non-coplanar VMAT plans, and better than non-coplanar clinical DCA plans. For GI, Halcyon MLC plans performed similarly to coplanar HDMLC plans and inferiorly compared to non-coplanar HDMLC plans. All coplanar VMAT plans (Halcyon MLC and HDMLC) and clinical DCA plans had similar V12Gy, but were inferior compared to non-coplanar VMAT plans. Halcyon plans had slightly reduced V3Gy and mean brain dose compared to HDMLC plans. The difference between Halcyon V1 and V2 is only significant in CI of tumors less than 1cm in diameter. Halcyon plans required longer optimization than Truebeam VMAT plans, but had similar delivery efficiency. Conclusion: For targets with diameter \u3e1 cm, Halcyon\u27s dual-layer stacked and staggered MLC is capable of producing similar dose conformity compared to HDMLC while reducing low dose spill to normal brain tissue. GI and V12Gy of Halcyon MLC plans were, in general, inferior to non-coplanar DCA or VMAT plans using HDMLC, likely due to coplanar geometry and wider MLC leaves. HDMLC maintained its advantage in CI for smaller targets with diameter \u3c1 cm. © 2019 Li, Irmen, Liu, Shi, Alonso-Basanta, Zou, Teo, Metz and Dong

    The azido[\u3csup\u3e14\u3c/sup\u3eC]atrazine photoaffinity technique labels a 34-kDa protein in Scenedesmus which functions on the oxidizing side of photosystem II

    Get PDF
    We have used azido[14C]atrazine to photoaffinity label thylakoids from wild-type (WT) Scenedesmus and a mutant, LF-1, which is blocked on the oxidizing side of photosystem II (PS II). One protein is labeled in each case, at 34 kDa in the WT and 36 kDa in LF-1. Previous comparison of the WT with LF-1 had been used to assign a PS II donor side function to the 34-kDa protein. These results suggest that this photoaffinity technique does not label the herbicide-binding protein involved in electron transfer on the reducing side of PS II. © 1985

    Sulfate-rich eolian and wet interdune deposits, Erebus crater, Meridiani Planum, Mars

    Get PDF
    This study investigates three bedrock exposures at Erebus crater, an ~ 300 m diameter crater approximately 4 km south of Endurance crater on Mars. These outcrops, called Olympia, Payson, and Yavapai, provide additional evidence in support of the dune–interdune model proposed for the formation of the deposits at the Opportunity landing site in Meridiani Planum. There is evidence for greater involvement of liquid water in the Olympia outcrop exposures than was observed in Eagle or Endurance craters. The Olympia outcrop likely formed in a wet interdune and sand sheet environment. The facies observed within the Payson outcrop, which is likely stratigraphically above the Olympia outcrop, indicate that it was deposited in a damp-wet interdune, sand sheet, and eolian dune environment. The Yavapai outcrop, which likely stratigraphically overlies the Payson outcrop, indicates that it was deposited in primarily a sand sheet environment and also potentially in an eolian dune environment. These three outcrop exposures may indicate an overall drying-upward trend spanning the stratigraphic section from its base at the Olympia outcrop to its top at the Yavapai outcrop. This contrasts with the wetting-upward trend seen in Endurance and Eagle craters. Thus, the series of outcrops seen at Meridiani by Opportunity may constitute a full climatic cycle, evolving from dry to wet to dry conditions

    Antitumor Activity of Selected Derivatives of Pyrazole- Benzenesulfonamides from Dilithiated C(α), N-Phenylhydrazones and Lithiated Methyl 2-(Aminosulfonyl)benzoate

    Get PDF
    Several pyrazole-benzenesulfonamides were subjected to biological evaluation involving tumor formation on potato discs caused by Agrobacterium tumefaciens. This assay led to some excellent and promising initial results with three of the pyrazole compounds showing increased tumor inhibition when compared to a recognized standard, camptothecin. The select pyrazole-benzenesulfonamides were prepared by condensation-cyclization of several dilithiated C(α),N-phenylhydrazones with lithiated methyl 2-aminosulfonyl-benzoate

    Lipidic cubic phase serial millisecond crystallography using synchrotron radiation.

    Get PDF
    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins.Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven protonpump bacteriorhodopsin (bR) at a resolution of 2.4 A ° . The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway

    A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells

    Get PDF
    Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many years because of their potential for large-scale manufacturing using roll-to-roll processing allied to their use of earth abundant raw materials. Two main challenges exist for DSC devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently achieved for laboratory-scale ‘hero’ cells and replacement of the widely-used liquid electrolytes which can limit device lifetimes. To increase device efficiency requires optimized dye injection and regeneration, most likely from multiple dyes while replacement of liquid electrolytes requires solid charge transporters (most likely hole transport materials – HTMs). While theoretical and experimental work have both been widely applied to different aspects of DSC research, these approaches are most effective when working in tandem. In this context, this perspective paper considers the key parameters which influence electron transfer processes in DSC devices using one or more dye molecules and how modelling and experimental approaches can work together to optimize electron injection and dye regeneration. This paper provides a perspective that theory and experiment are best used in tandem to study DSC device

    A Wide Field Survey of Satellite Galaxies around the Spiral Galaxy M106

    Full text link
    We present a wide field survey of satellite galaxies in M106 (NGC 4258) covering a 1.7\degr \times 2\degr field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Four of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disk profile with varying scale length. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d <100<100 kpc) is well fitted by a power-law with a power index of −2.1±0.5-2.1\pm0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint end slope of −1.19−0.06+0.03-1.19^{+0.03}_{-0.06}. Integrated photometric properties (total luminosity, total colour, and disk scale length) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.Comment: Accepted by MNRA

    Simulation of Quantum Magnetism in Mixed Spin Systems with Impurity Doped Ion Crystal

    Full text link
    We propose the realization of linear crystals of cold ions which contain different atomic species for investigating quantum phase transitions and frustration effects in spin system beyond the commonly discussed case of s=1/2s=1/2. Mutual spin-spin interactions between ions can be tailored via the Zeeman effect by applying oscillating magnetic fields with strong gradients. Further, collective vibrational modes in the mixed ion crystal can be used to enhance and to vary the strength of spin-spin interactions and even to switch those forces from a ferro- to an antiferromagnetic character. We consider the behavior of the effective spin-spin couplings in an ion crystal of spin-1/2 ions doped with high magnetic moment ions with spin S=3. We analyze the ground state phase diagram and find regions with different spin orders including ferrimagnetic states. In the most simple non-trivial example we deal with a linear {\{Ca+^+, Mn+^+, Ca+}^+\} crystal with spins of \{1/2,3,1/2}. To show the feasibility with current state-of-the-art experiments, we discuss how quantum phases might be detected using a collective Stern-Gerlach effect of the ion crystal and high resolution spectroscopy. Here, the state-dependent laser-induced fluorescence of the indicator spin-1/2 ion, of species 40^{40}Ca+^+, reveals also the spin state of the simulator spin-3 ions, 50^{50}Mn+^+ as this does not possess suitable levels for optical excitation and detection.Comment: 15 pages, 5 figure
    • 

    corecore