83 research outputs found
A Low-Dose CT-Based Radiomic Model to Improve Characterization and Screening Recall Intervals of Indeterminate Prevalent Pulmonary Nodules.
Lung cancer (LC) is currently one of the main causes of cancer-related deaths worldwide. Low-dose computed tomography (LDCT) of the chest has been proven effective in secondary prevention (i.e., early detection) of LC by several trials. In this work, we investigated the potential impact of radiomics on indeterminate prevalent pulmonary nodule (PN) characterization and risk stratification in subjects undergoing LDCT-based LC screening. As a proof-of-concept for radiomic analyses, the first aim of our study was to assess whether indeterminate PNs could be automatically classified by an LDCT radiomic classifier as solid or sub-solid (first-level classification), and in particular for sub-solid lesions, as non-solid versus part-solid (second-level classification). The second aim of the study was to assess whether an LCDT radiomic classifier could automatically predict PN risk of malignancy, and thus optimize LDCT recall timing in screening programs. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, positive predictive value, negative predictive value, sensitivity, and specificity. The experimental results showed that an LDCT radiomic machine learning classifier can achieve excellent performance for characterization of screen-detected PNs (mean AUC of 0.89 ± 0.02 and 0.80 ± 0.18 on the blinded test dataset for the first-level and second-level classifiers, respectively), providing quantitative information to support clinical management. Our study showed that a radiomic classifier could be used to optimize LDCT recall for indeterminate PNs. According to the performance of such a classifier on the blinded test dataset, within the first 6 months, 46% of the malignant PNs and 38% of the benign ones were identified, improving early detection of LC by doubling the current detection rate of malignant nodules from 23% to 46% at a low cost of false positives. In conclusion, we showed the high potential of LDCT-based radiomics for improving the characterization and optimizing screening recall intervals of indeterminate PNs
Outcomes of pregnancies after kidney transplantation: lessons learned from CKD. A comparison of transplanted, nontransplanted chronic kidney disease patients and low-risk pregnancies: a multicenter nationwide analysis.
BACKGROUND: Kidney transplantation (KT) may restore fertility in CKD. The reasons why materno-foetal outcomes are still inferior to the overall population are only partially known. Comparison with the CKD population may offer some useful insights for management and counselling.Aim of this study was to analyse the outcomes of pregnancy after KT, compared with a large population of non-transplanted CKD patients and with low-risk control pregnancies, observed in Italy the new millennium.
METHODS: We selected 121 live-born singletons after KT (Italian study group of kidney in pregnancy, national coverage about 75%), 610 live-born singletons in CKD and 1418 low-risk controls recruited in 2 large Italian Units, in the same period (2000-2014). The following outcomes were considered: maternal and foetal death; malformations; preterm delivery; small for gestational age baby (SGA); need for the neonatal intensive care unit (NICU); doubling of serum creatinine or increase in CKD stage. Data were analysed according to kidney diseases, renal function (staging according to CKD-EPI), hypertension, maternal age, partity, ethnicity.
RESULTS: Materno-foetal outcomes are less favourable in CKD and KT as compared with the low-risk population. CKD stage and hypertension are important determinants of results. KT patients with e-GFR >90 have worse outcomes compared with CKD stage 1 patients; the differences level off when only CKD patients affected by glomerulonephritis or systemic diseases ('progressive CKD') are compared with KT. In the multivariate analysis, risk for preterm and early-preterm delivery was linked to CKD stage (2-5 versus 1: RR 3.42 and 3.78) and hypertension (RR 3.68 and 3.16) while no difference was associated with being a KT or a CKD patient.
CONCLUSIONS: The materno-foetal outcomes in patients with kidney transplantation are comparable with those of nontransplanted CKD patients with similar levels of kidney function impairment and progressive and/or immunologic kidney diseas
Prognostic implications of comorbidity patterns in critically ill COVID-19 patients: A multicenter, observational study
Background The clinical heterogeneity of COVID-19 suggests the existence of different phenotypes with prognostic implications. We aimed to analyze comorbidity patterns in critically ill COVID-19 patients and assess their impact on in-hospital outcomes, response to treatment and sequelae. Methods Multicenter prospective/retrospective observational study in intensive care units of 55 Spanish hospitals. 5866 PCR-confirmed COVID-19 patients had comorbidities recorded at hospital admission; clinical and biological parameters, in-hospital procedures and complications throughout the stay; and, clinical complications, persistent symptoms and sequelae at 3 and 6 months. Findings Latent class analysis identified 3 phenotypes using training and test subcohorts: low-morbidity (n=3385; 58%), younger and with few comorbidities; high-morbidity (n=2074; 35%), with high comorbid burden; and renal-morbidity (n=407; 7%), with chronic kidney disease (CKD), high comorbidity burden and the worst oxygenation profile. Renal-morbidity and high-morbidity had more in-hospital complications and higher mortality risk than low-morbidity (adjusted HR (95% CI): 1.57 (1.34-1.84) and 1.16 (1.05-1.28), respectively). Corticosteroids, but not tocilizumab, were associated with lower mortality risk (HR (95% CI) 0.76 (0.63-0.93)), especially in renal-morbidity and high-morbidity. Renal-morbidity and high-morbidity showed the worst lung function throughout the follow-up, with renal-morbidity having the highest risk of infectious complications (6%), emergency visits (29%) or hospital readmissions (14%) at 6 months (p<0.01). Interpretation Comorbidity-based phenotypes were identified and associated with different expression of in-hospital complications, mortality, treatment response, and sequelae, with CKD playing a major role. This could help clinicians in day-to-day decision making including the management of post-discharge COVID-19 sequelae. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Convenio Marco de cooperación entra la Universidad de Cuenca y la University of Milano-Bicocca
ESPAÑO
- …