62 research outputs found

    Watasemycin biosynthesis in Streptomyces venezuelae : thiazoline C-methylation by a type B radical-SAM methylase homologue

    Get PDF
    2-Hydroxyphenylthiazolines are a family of iron-chelating nonribosomal peptide natural products that function as virulence-conferring siderophores in various Gram-negative bacteria. They have also been reported as metabolites of Gram-positive Streptomyces species. Transcriptional analyses of Streptomyces venezuelae ATCC 10712 revealed that its genome contains a putative 2-hydroxyphenylthiazoline biosynthetic gene cluster. Heterologous expression of the gene cluster in Streptomyces coelicolor M1152 showed that the mono- and dimethylated derivatives, thiazostatin and watasemycin, respectively, of the 2-hydroxyphenylthiazoline enantiopyochelin are two of its metabolic products. In addition, isopyochelin, a novel isomer of pyochelin containing a C-methylated thiazolidine, was identified as a third metabolic product of the cluster. Metabolites with molecular formulae corresponding to aerugine and pulicatins A/B were also detected. The structure and stereochemistry of isopyochelin were confirmed by comparison with synthetic standards. The role of two genes in the cluster encoding homologues of PchK, which is proposed to catalyse thiazoline reduction in the biosynthesis of enantiopyochelin in Pseudomonas protegens, was investigated. One was required for the production of all the metabolic products of the cluster, whereas the other appears not to be involved in the biosynthesis of any of them. Deletion of a gene in the cluster encoding a type B radical-SAM methylase homologue abolished the production of watasemycin, but not thiazostatin or isopyochelin. Feeding of thiazostatin to the mutant lacking the functional PchK homologue resulted in complete conversion to watasemycin, demonstrating that thiazoline C-methylation by the type B radical-SAM methylase homologue is the final step in watasemycin biosynthesis

    Discovery of Unique Lanthionine Synthetases Reveals New Mechanistic and Evolutionary Insights

    Get PDF
    Identification of a new class of lanthionine synthetases provides insight into the mechanism and evolution of cyclic peptide biosynthesis

    Analysis of the tunicamycin biosynthetic gene cluster of streptomyces chartreusis reveals new insights into tunicamycin production and immunity

    Get PDF
    The tunicamycin biosynthetic gene cluster of Streptomyces chartreusis consists of 14 genes (tunA to tunN) with a high degree of apparent translational coupling. Transcriptional analysis revealed that all of these genes are likely to be transcribed as a single operon from two promoters, tunp1 and tunp2. In-frame deletion analysis revealed that just six of these genes (tunABCDEH) are essential for tunicamycin production in the heterologous host Streptomyces coelicolor, while five (tunFGKLN) with likely counterparts in primary metabolism are not necessary, but presumably ensure efficient production of the antibiotic at the onset of tunicamycin biosynthesis. Three genes are implicated in immunity, namely, tunI and tunJ, which encode a two-component ABC transporter presumably required for export of the antibiotic, and tunM, which encodes a putative S-adenosylmethionine (SAM)-dependent methyltransferase. Expression of tunIJ or tunM in S. coelicolor conferred resistance to exogenous tunicamycin. The results presented here provide new insights into tunicamycin biosynthesis and immunity

    Heterologous expression of a cryptic gene cluster from Streptomyces leeuwenhoekii C34T yields a novel lasso peptide, leepeptin

    Get PDF
    ACKNOWLEDGEMENTS. We are grateful to Michael Goodfellow and Alan Bull for providing S. leeuwenhoekii C34T , and to Michael Fischbach and Jan Claesen for S. viridochromogenes and S. pristinaspiralis, Matthias Mach for S. davawensis, and Kristian Apel on October 31, 2019 at University of Aberdeen http://aem.asm.org/ Downloaded from 17 for S. roseochromogenes. We thank Govind Chandra for advice on blastP analyses of the lasso peptide data sets, Solène Rollet for technical support in the isolation of leepeptin and Andrew Truman for his comments on the manuscript. J.F.C. and V.R. received National PhD Scholarships (#21110356 and #21110384, respectively) and Visiting Student Scholarships (Becas Chile, 2013–2014) from the National Commission for Scientific and Technological Research (CONICYT). S.A.J. thanks the University of Aberdeen for an Elphinstone Scholarship. This work was supported financially by the Biotechnological and Biological Sciences Research Council (BBSRC, United Kingdom) Institute Strategic Programme Grant “Understanding and Exploiting Plant and Microbial Secondary Metabolism” (BB/J004561/1), the Basal Programme of CONICYT (Chile) for funding of the Centre for Biotechnology and Bioengineering, CeBiB (project FB0001) and the UK Newton Project for UK–Chile collaboration (grant JIC CA586).Peer reviewedPublisher PD

    New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712

    Get PDF
    Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916–sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na(+)/H(+) antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway

    Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)

    Get PDF
    We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe

    A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor

    Get PDF
    Streptomycetes are mycelial bacteria that produce sporulating aerial hyphae on solid media. Bald (bld) mutants fail to form aerial mycelium under at least some conditions. bldA encodes the only tRNA species able to read the leucine codon UUA efficiently, implying the involvement of a TTA-containing gene in initiating aerial growth. One candidate for such a gene was bldH, because the bldH109 mutant of Streptomyces coelicolor resembles bldA mutants in some aspects. In the work reported here, adpAc, an S. coelicolor gene similar to the Streptomyces griseus A factor-regulated adpAg, was found to complement the bldH109 mutant partially at both single and multiple copies. The sequence of adpAc from the bldH109 mutant revealed a frameshift. A constructed in frame deletion of adpAc conferred a bald colony phenotype, and the mutant behaved like bldA mutants and bldH109 in its pattern of extracellular signal exchange. Both adpAc and adpAg contain a TTA codon. A TTA-free version of adpAc was engineered by replacing the TTA leucine codon with a cognate TTG leucine codon. The adpA(TTA→TTG) gene could partially restore aerial mycelium formation to a bldA mutant when it was followed in cis by the gene ornA, as in the natural chromosomal arrangement. This indicated that the UUA codon in adpAc mRNA is the principal target through which bldA influences morphological differentiation. It also implied that translational arrest at the UUA codon in adpAc mRNA caused a polar effect on the downstream ornA, and that the poor translation of both genes contributes extensively to the deficiency of aerial mycelium formation in bldA mutants. Unlike the situation in S. griseus, adpAc transcription does not depend on the host’s γ-butyrolactone signalling system, at least in liquid cultures. In addition, sigma factor BldN, which is the homologue of an S. griseus sigma factor AdsA that is absent from adpAg mutants of S. griseus, was present in the constructed adpAc null mutant of S. coelicolor

    Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global <it>in vivo </it>approach to identify the GlnR regulon of <it>Streptomyces venezuelae</it>, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between <it>glnR</it><sup>+ </sup>and <it>glnR </it>mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the <it>S. venezuelae </it>genome.</p> <p>Results</p> <p>GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for <it>S. venezuelae</it>. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions.</p> <p>Conclusions</p> <p>The GlnR regulon of <it>S. venezuelae </it>is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms.</p

    Structures of DPAGT1 explain glycosylation disease mechanisms and advance TB antibiotic design

    Get PDF
    Summary: Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic “lipid-altered” tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug

    Biosynthesis and Regulation of Grisemycin, a New Member of the Linaridin Family of Ribosomally Synthesized Peptides Produced by Streptomyces griseus IFO 13350 ▿

    No full text
    Our recent identification and genetic analysis of the biosynthetic gene cluster for production of the ribosomally synthesized and posttranslationally modified peptide cypemycin revealed a new class of peptide natural products, the linaridins. Here we describe the identification and characterization of grisemycin, a linaridin produced by a previously unidentified gene cluster in Streptomyces griseus IFO 13350. Mass spectrometric analysis revealed that grisemycin possesses at least three of the modifications found in cypemycin, as well as an analogous leader peptidase cleavage site. Expression of putative grisemycin biosynthetic genes in a Streptomyces coelicolor A3(2) derivative, combined with deletion of the gene encoding the grisemycin precursor peptide, confirmed the identity of the grisemycin gene cluster. Both grisemycin and cypemycin depend on the transcriptional activator AdpA for wild-type levels of production
    corecore