7 research outputs found

    Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region

    Get PDF
    Peatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows and fens, and further to bogs. Potential microbial activity (aerobic CO2 production; CH4 production and oxidation) and biomass were greatest in the early successional meadows, although their communities of aerobic decomposers (fungi, actinobacteria), methanogens, and methanotrophs did not differ from the older fens. Instead, the functional microbial communities shifted at the fen-bog transition concurrent with a sudden decrease in C fluxes. The successional patterns of decomposer versus CH4-cycling communities diverged at the bog stage, indicating strong but distinct microbial responses to Sphagnum dominance and acidity. We highlight young meadows as dynamic sites with the greatest microbial potential for C release. These hot spots of C turnover with dense sedge cover may represent a sensitive bottleneck in succession, which is necessary for eventual long-term peat accumulation. The distinctive microbes in bogs could serve as indicators of the C sink function in restoration measures that aim to stabilize the C in the peat.Peer reviewe

    Towards comparable assessment of the soil nutrient status across scales-Review and development of nutrient metrics

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu CEX2019-000940-MNutrient availability influences virtually every aspect of an ecosystem, and is a critical modifier of ecosystem responses to global change. Although this crucial role of nutrient availability in regulating ecosystem structure and functioning has been widely acknowledged, nutrients are still often neglected in observational and experimental synthesis studies due to difficulties in comparing the nutrient status across sites. In the current study, we explain different nutrient-related concepts and discuss the potential of soil-, plant- and remote sensing-based metrics to compare the nutrient status across space. Based on our review and additional analyses on a dataset of European, managed temperate and boreal forests (ICP [International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests] Forests dataset), we conclude that the use of plant- and remote sensing-based metrics that rely on tissue stoichiometry is limited due to their strong dependence on species identity. The potential use of other plant-based metrics such as Ellenberg indicator values and plant-functional traits is also discussed. We conclude from our analyses and review that soil-based metrics have the highest potential for successful intersite comparison of the nutrient status. As an example, we used and adjusted a soil-based metric, previously developed for conifer forests across Sweden, against the same ICP Forests data. We suggest that this adjusted and further adaptable metric, which included the organic carbon concentration in the upper 20 cm of the soil (including the organic fermentation-humus [FH] layer), the C:N ratio and of the FH layer, can be used as a complementary tool along with other indicators of nutrient availability, to compare the background nutrient status across temperate and boreal forests dominated by spruce, pine or beech. Future collection and provision of harmonized soil data from observational and experimental sites is crucial for further testing and adjusting the metric

    Temporal biodiversity change following disturbance varies along an environmental gradient

    Get PDF
    Aim The diversity and composition of natural communities are rapidly changing due to anthropogenic disturbances. Magnitude of this compositional reorganization varies across the globe, but reasons behind the variation remain largely unknown. Disturbances induce temporal turnover by stimulating species colonizations, causing local extinctions, altering dominance structure, or all of these. We test which of these processes drive temporal community changes, and whether they are constrained by natural environmental gradients. Moreover, we assess to what degree identity shifts translate to changes in dominance structure. Location Finland. Time period Observations 1985-2006, disturbance history > 140 years. Major taxa studied Vascular plants. Methods We investigated temporal turnover of boreal forest understorey in response to disturbance, here forest management, along a soil fertility gradient. We disentangle the roles of species gains, losses and abundance changes in driving temporal turnover in response to and after disturbance by comparing turnover rates in different forest age categories along a fertility gradient. We quantify temporal turnover using richness-based complement of Jaccard's similarity index and proportional-abundance based dissimilarity index. We also test whether disturbance history or fertility influence the relationship between identity shifts and dominance structure. Results We found that the impact of disturbance on temporal turnover depends on soil fertility. The greatest turnover occurred in the most fertile forests immediately after disturbance. There, species gains and losses strongly altered dominance structure leading to high turnover, whereas undisturbed old forests and nutrient-poor habitats were characterized by stable dominant species even when the majority of species shifted their identity. Main conclusions Our results suggest that human impacts on temporal biodiversity change vary along environmental gradients. In boreal forests, the fertile habitats have a higher probability than nutrient-poor sites of changing their composition in response to anthropogenic disturbances. Resource availability and disturbance history may thus influence consequences of temporal turnover for ecosystem functioning.Peer reviewe

    Distinct patterns of below- and aboveground growth phenology and litter carbon inputs along a boreal site type gradient

    Get PDF
    Forest ecosystem productivity is strongly linked to site nutrient availability, which is influenced by litter inputs and their decomposition rates. Fine roots and mycelia are key contributors in belowground soil carbon (C) accumulation, but studies have seldom reported how belowground litter C input is related to site types in boreal forests. In this study, three mature and one young Pinus sylvestris forests along a site type gradient in southern Finland were chosen for measurements of fine root biomass, fine root longevity, below- and aboveground growth phenology and annual litter input from tree and understorey vegetation. Site types were distinguished by understorey vegetation composition, which indicated the site fertility. Fine root biomass per tree stand basal area decreased significantly from nutrient-poor to nutrient-rich sites, the nutrient-poor sites with longer fine root longevity resulted in an equal belowground litter input with the nutrient-rich site. Above- and belowground annual litter inputs were 131–236 and 70–91 g m−2 year−1, respectively. Aboveground litter increased with site fertility, resulting into belowground litter having a decreasing trend from 37% to 23% of total litter inputs with increasing site fertility. Ectomycorrhizal mycelia and understory production contributed 8–13% and 18–41% of belowground production, respectively. Contribution of understorey vegetation to the belowground litter C input was lower than that of trees at xeric and sub-xeric sites but equaled to that of trees at the mesic site. Our study showed distinct dimensions of below- and aboveground litter inputs influenced by site types. Moreover, we emphasize that the belowground C inputs from ectomycorrhizal mycelia and the understorey in addition to those of trees should always be considered in C balances and C reporting in boreal conifers.Peer reviewe

    Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation

    No full text
    Peatlands form currently a major terrestrial pool of organic matter (OM) and carbon (C). Dynamics of peat accumulation processes can be approached via models, which, however, need to be evaluated against real data. Land uplift coast with ongoing primary peatland formation is a unique setting to study the patterns and controls of peatland vegetation succession, development from fen to bog, and consequent changes in peat, carbon (C) and nitrogen (N) accumulation. Here we compared a chronosequence of peatlands with a vertical peat sequence and ran Holocene Peatland Model (HPM) simulations, and evaluated the simulation against the field observations. The modern vegetation from the emergent sea shore to a bog with age of about 3000 years formed a continuum from minerotrophic to ombrotrophic plant communities. Similar sequence of plant communities was found in historical vegetation data. Along the chronosequence the fen-bog transition stage was most diverse regarding to plant community types, but also to spatial variability in peat height and water table depth (WTD). The transition from meadow to fen communities was associated with the establishment of Sphagnum moss patches. Palaeobotanical evidence from the bog site showed a rapid and quite recent fen-bog transition indicated by coinciding decrease in minerotrophic plant functional types (sedge) and increase in ombrotrophic plant functional types (lawn or hummock Sphagna). Concurrent vegetation transition also in the cores from younger, a 700 year old, fen site suggests different pace of succession in these age cohorts, possibly due to external forcing. Evaluation of the HPM simulations indicated that the model is adjustable and it produced reasonable predictions despite temperature not being included directly in the model

    Physiological and climate controls on foliar mercury uptake by European tree species

    Get PDF
    Despite the importance of vegetation uptake of atmospheric gaseous elemental mercury (Hg(0)) within the global Hg cycle, little knowledge exists on the physiological, climatic, and geographic factors controlling stomata! uptake of atmospheric Hg(0) by tree foliage. We investigate controls on foliar stomatal Hg(0) uptake by combining Hg measurements of 3569 foliage samples across Europe with data on tree species' traits and environmental conditions. To account for foliar Hg accumulation over time, we normalized foliar Hg concentration over the foliar life period from the simulated start of the growing season to sample harvest. The most relevant parameter impacting daily foliar stomatal Hg uptake was tree functional group (deciduous versus coniferous trees). On average, we measured 3.2 times higher daily foliar stomatal Hg uptake rates in deciduous leaves than in coniferous needles of the same age. Across tree species, for foliage of beech and fir, and at two out of three forest plots with more than 20 samples, we found a significant (p < 0.001) increase in foliar Hg values with respective leaf nitrogen concentrations. We therefore suggest that foliar stomatal Hg uptake is controlled by tree functional traits with uptake rates increasing from low to high nutrient content representing low to high physiological activity. For pine and spruce needles, we detected a significant linear decrease in daily foliar stomatal Hg uptake with the proportion of time during which water vapor pressure deficit (VPD) exceeded the species-specific threshold values of 1.2 and 3 kPa, respectively. The proportion of time within the growing season during which surface soil water content (ERAS-Land) in the region of forest plots was low correlated negatively with foliar Hg uptake rates of beech and pine. These findings suggest that stomatal uptake of atmospheric Hg(0) is inhibited under high VPD conditions and/or low soil water content due to the regulation of stomatal conductance to reduce water loss under dry conditions. Other parameters associated with forest sampling sites (latitude and altitude), sampled trees (average age and diameter at breast height), or regional satellite-observation-based transpiration product (Global Land Evaporation Amsterdam Model: GLEAM) did not significantly correlate with daily foliar Hg uptake rates. We conclude that tree physiological activity and stomatal response to VPD and soil water content should be implemented in a stomatal Hg model to assess future Hg cycling under different anthropogenic emission scenarios and global warming

    Climate change reshuffles northern species within their niches

    Get PDF
    Climate change is a pervasive threat to biodiversity. While range shifts are a known consequence of climate warming contributing to regional community change, less is known about how species' positions shift within their climatic niches. Furthermore, whether the relative importance of different climatic variables prompting such shifts varies with changing climate remains unclear. Here we analysed four decades of data for 1,478 species of birds, mammals, butterflies, moths, plants and phytoplankton along a 1,200 km high latitudinal gradient. The relative importance of climatic drivers varied non-uniformly with progressing climate change. While species turnover among decades was limited, the relative position of species within their climatic niche shifted substantially. A greater proportion of species responded to climatic change at higher latitudes, where changes were stronger. These diverging climate imprints restructure a full biome, making it difficult to generalize biodiversity responses and raising concerns about ecosystem integrity in the face of accelerating climate change.The authors analyse four decades of distribution data for various taxonomic groups to understand the shift of species within their climatic niches and the changing influences of different climate factors. The diverse and diverging climate imprints raise concerns about future ecosystem integrity
    corecore