278 research outputs found
Local epidemics gone viral: Evolution and diffusion of the Italian HIV-1 recombinant form CRF60_BC
The molecular epidemiology of HIV-1 in Italy is becoming increasingly complex, mainly due to the spread of non-B subtypes and the emergence of new recombinant forms. We previously characterized the outbreak of the first Italian circulating recombinant form (CRF60_BC), occurring among young MSM living in Apulia between the years 2009 and 2011. Here we show a 5-year follow-up surveillance to trace the evolution of CRF60_BC and to investigate its further spread in Italy. We collected additional sequences and clinical data from patients harboring CRF60_BC, enrolled at the Infectious Diseases Clinic of the University of Bari. In addition to the 24 previously identified sequences, we retrieved 27 CRF60_BC sequences from patients residing in Apulia, whose epidemiological and clinical features did not differ from those of the initial outbreak, i.e., the Italian origin, young age at HIV diagnosis (median: 24 years; range: 18-37), MSM risk factor (23/25, 92%) and recent infection (from 2008 to 2017). Sequence analysis revealed a growing overall nucleotide diversity, with few nucleotide changes that were fixed over time. Twenty-seven additional sequences were detected across Italy, spanning multiple distant regions. Using a BLAST search, we also identified a CRF60_BC sequence isolated in United Kingdom in 2013. Three patients harbored a unique second generation recombinant form in which CRF60_BC was one of the parental strains. Our data show that CRF60_BC gained epidemic importance, spreading among young MSM in multiple Italian regions and increasing its population size in few years, as the number of sequences identified so far has triplicated since our first report. The observed further divergence of CRF60_BC is likely due to evolutionary bottlenecks and host adaptation during transmission chains. Of note, we detected three second-generation recombinants, further supporting a widespread circulation of CRF60_BC and the increasing complexity of the HIV-1 epidemic in Italy
Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020
: The aims of this study were to characterize new SARS-CoV-2 genomes sampled all over Italy and to reconstruct the origin and the evolutionary dynamics in Italy and Europe between February and June 2020. The cluster analysis showed only small clusters including < 80 Italian isolates, while most of the Italian strains were intermixed in the whole tree. Pure Italian clusters were observed mainly after the lockdown and distancing measures were adopted. Lineage B and B.1 spread between late January and early February 2020, from China to Veneto and Lombardy, respectively. Lineage B.1.1 (20B) most probably evolved within Italy and spread from central to south Italian regions, and to European countries. The lineage B.1.1.1 (20D) developed most probably in other European countries entering Italy only in the second half of March and remained localized in Piedmont until June 2020. In conclusion, within the limitations of phylogeographical reconstruction, the estimated ancestral scenario suggests an important role of China and Italy in the widespread diffusion of the D614G variant in Europe in the early phase of the pandemic and more dispersed exchanges involving several European countries from the second half of March 2020
Natalizumab affects T-cell phenotype in multiple sclerosis: implications for JCV reactivation
The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects
Optical and electrical characteristics of (LiCl)x(P2O5)1-x glass.
Homogeneous (LiCl) x (P2O5)1 − x glasses were synthesised using a melt-quenching method for x = 0.1–0.6 in the interval of 0.05. The amorphous structure of the samples was evident by the X-ray diffraction spectrum. The short range structures of the binary phosphate samples were examined by Fourier transform infrared spectroscopy, whilst the density of the samples was measured as supportive data for the investigations. The results of refractive indices as measured using an ellipsometer reveal the homogeneity of samples and was found to depend on the glass composition. The electrical properties of the glasses were investigated by ac impedance spectroscopy from 10 mHz to 1 MHz for temperatures ranging from room temperature to 573 K. An estimation of the bulk resistivity was obtained by taking the intercepts on the real axis at low frequencies of the complex impedance plot. The dc conductivities derived from the reciprocal of resistivity values were found to obey the Arrhenius relationship, and its activation energy shows a decreasing trend with the increase in LiCl content in the glass. Lastly, an equivalent circuits consisting of real and complex capacitors is proposed to describe the dielectric response of the glass
Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein
BACKGROUND: We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1) variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env) protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY), creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. RESULTS: Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R). This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. CONCLUSION: The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY) can be corrected by a second site mutation in Env (GIA-SKY-G431R) that affects the interaction with the CD4 receptor
Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study
Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing
Repair of Parastomal Hernias with Biologic Grafts: A Systematic Review
Contains fulltext :
98303.pdf (publisher's version ) (Open Access)BACKGROUND: Biologic grafts are increasingly used instead of synthetic mesh for parastomal hernia repair due to concerns of synthetic mesh-related complications. This systematic review was designed to evaluate the use of these collagen-based scaffolds for the repair of parastomal hernias. METHODS: Studies were retrieved after searching the electronic databases MEDLINE, EMBASE and Cochrane CENTRAL. The search terms 'paracolostomy', 'paraileostomy', 'parastomal', 'colostomy', 'ileostomy', 'hernia', 'defect', 'closure', 'repair' and 'reconstruction' were used. Selection of studies and assessment of methodological quality were performed with a modified MINORS index. All reports on repair of parastomal hernias using a collagen-based biologic scaffold to reinforce or bridge the defect were included. Outcomes were recurrence rate, mortality and morbidity. RESULTS: Four retrospective studies with a combined enrolment of 57 patients were included. Recurrence occurred in 15.7% (95% confidence interval [CI] 7.8-25.9) of patients and wound-related complications in 26.2% (95% CI 14.7-39.5). No mortality or graft infections were reported. CONCLUSIONS: The use of reinforcing or bridging biologic grafts during parastomal hernia repair results in acceptable rates of recurrence and complications. However, given the similar rates of recurrence and complications achieved using synthetic mesh in this scenario, the evidence does not support use of biologic grafts
Origin and Epidemiological History of HIV-1 CRF14_BG
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Users must also make clear the license terms under which the work was published. CC BY Licence: http://creativecommons.org/licenses/by/4.0/Background: CRF14_BG isolates, originally found in Spain, are characterized by CXCR4 tropism and rapid disease
progression. This study aimed to identify the origin of CRF14_BG and reconstruct its epidemiological history based on new
isolates from Portugal.Methodology/Principal Findings: C2V3C3 env gene sequences were obtained from 62 samples collected in 1993–1998
from Portuguese HIV-1 patients. Full-length genomic sequences were obtained from three patients. Viral subtypes, diversity,
divergence rate and positive selection were investigated by phylogenetic analysis. The molecular structure of the genomes
was determined by bootscanning. A relaxed molecular clock model was used to date the origin of CRF14_BG. Geno2pheno
was used to predict viral tropism. Subtype B was the most prevalent subtype (45 sequences; 73%) followed by CRF14_BG (8;
13%), G (4; 6%), F1 (2; 3%), C (2; 3%) and CRF02_AG (1; 2%). Three CRF14_BG sequences were derived from 1993 samples.
Near full-length genomic sequences were strongly related to the CRF14_BG isolates from Spain. Genetic diversity of the
Portuguese isolates was significantly higher than the Spanish isolates (0.044 vs 0.014, P,0.0001). The mean date of origin of
the CRF14_BG cluster was estimated to be 1992 (range, 1989 and 1996) based on the subtype G genomic region and 1989
(range, 1984–1993) based on the subtype B genomic region. Most CRF14_BG strains (78.9%) were predicted to be CXCR4.
Finally, up to five amino acids were under selective pressure in subtype B V3 loop whereas only one was found in the
CRF14_BG cluster.Conclusions: CRF14_BG emerged in Portugal in the early 1990 s soon after the beginning of the HIV-1 epidemics, spread to
Spain in late 1990 s as a consequence of IVDUs migration and then to the rest of Europe. CXCR4 tropism is a general
characteristic of this CRF that may have been selected for by escape from neutralizing antibody response
Impact of the HIV-1 env Genetic Context outside HR1–HR2 on Resistance to the Fusion Inhibitor Enfuvirtide and Viral Infectivity in Clinical Isolates
Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1–HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1–HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1–HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1–HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy
- …