650 research outputs found

    Exploring and Exploiting Uncertainty for Incomplete Multi-View Classification

    Full text link
    Classifying incomplete multi-view data is inevitable since arbitrary view missing widely exists in real-world applications. Although great progress has been achieved, existing incomplete multi-view methods are still difficult to obtain a trustworthy prediction due to the relatively high uncertainty nature of missing views. First, the missing view is of high uncertainty, and thus it is not reasonable to provide a single deterministic imputation. Second, the quality of the imputed data itself is of high uncertainty. To explore and exploit the uncertainty, we propose an Uncertainty-induced Incomplete Multi-View Data Classification (UIMC) model to classify the incomplete multi-view data under a stable and reliable framework. We construct a distribution and sample multiple times to characterize the uncertainty of missing views, and adaptively utilize them according to the sampling quality. Accordingly, the proposed method realizes more perceivable imputation and controllable fusion. Specifically, we model each missing data with a distribution conditioning on the available views and thus introducing uncertainty. Then an evidence-based fusion strategy is employed to guarantee the trustworthy integration of the imputed views. Extensive experiments are conducted on multiple benchmark data sets and our method establishes a state-of-the-art performance in terms of both performance and trustworthiness.Comment: CVP

    The Two-Component Regulatory System VicRK is Important to Virulence of Streptococcus equi Subspecies equi

    Get PDF
    This study aims at evaluating the importance of the two-component regulatory system VicRK to virulence of the horse pathogen Streptococcus equi subspecies equi and the potential of a vicK mutant as a live vaccine candidate using mouse infection models. The vicK gene was deleted by gene replacement. The ΔvicK mutant is attenuated in virulence in both subcutaneous and intranasal infections in mice. ΔvicK grows less slowly than the parent strain but retains the ability of S. equi to resist to phagocytosis by polymorphoneuclear leukocytes, suggesting that the vicK deletion causes growth defect. ΔvicK infection protects mice against reinfection with a wild-type S. equi strain. Intranasal ΔvicK infection induces production of anti-SeM mucosal IgA and systemic IgG. These results indicate that VicRK is important to S. equi growth and virulence and suggest that ΔvicK has the potential to be developed as a live S. equi vaccine

    American Military Culture and Civil-Military Relations Today

    Get PDF
    We demonstrate a standard-free method to retrieve compositional information in AlxIn1-xN thin films by measuring the bulk plasmon energy (E-p), employing electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Two series of samples were grown by magnetron sputter epitaxy (MSE) and metal organic vapor phase epitaxy (MOVPE), which together cover the full compositional range 0 <= x <= 1. Complementary compositional measurements were obtained using Rutherford backscattering spectroscopy (RBS) and the lattice parameters were obtained by X-ray diffraction (XRD). It is shown that E-p follows a linear relation with respect to composition and lattice parameter between the alloying elements from AlN to InN allowing for straightforward compositional analysis. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Bose condensation of upper-branch exciton-polaritons in a transferrable microcavity

    Full text link
    Exciton-polaritons are composite bosonic quasiparticles arising from the strong coupling of excitonic transitions and optical modes. Exciton-polaritons have triggered wide exploration in the past decades not only due to their rich quantum phenomena such as superfluidity, superconductivity and quantized vortices but also due to their potential applications for unconventional coherent light sources and all-optical control elements. Here, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferrable WS2_2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity. This sharp increase in intensity is accompanied by a decrease of the linewidth and an increase of the upper polariton temporal coherence, all of which are hallmarks of Bose-Einstein condensation. By simulating the quantum Boltzmann equation, we show that the upper polariton condensation only occurs for a particular range of particle density. We can attribute the creation of Bose condensation of the upper polariton to the following requirements: 1) the upper polariton is more excitonic than the lower one; 2) there is relatively more pumping in the upper branch; and 3) the conversion time from the upper to the lower polariton branch is long compared to the lifetime of the upper polaritons

    Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard

    Get PDF
    GRAS transcription factors are known to play important roles in plant signal transduction and development. A comprehensive study was conducted to explore the GRAS family in the Brassica juncea genome. A total of 88 GRAS genes were identified which were categorized into nine groups according to the phylogenetic analysis. Gene structure analysis showed a high group-specificity, which corroborated the gene grouping results. The chromosome distribution and sequence analysis suggested that gene duplication events are vital for the expansion of GRAS genes in the B. juncea genome. The changes in evolution rates and amino acid properties among groups might be responsible for their functional divergence. Interaction networks and cis-regulatory elements were analyzed including DELLA and eight interaction proteins (including four GID1, two SLY1, and two PIF3 proteins) that are primarily involved in light and hormone signaling. To understand their regulatory role in growth and development, the expression profiles of BjuGRASs and interaction genes were examined based on transcriptome data and qRT-PCR, and selected genes (BjuGRAS3, 5, 7, 8, 10, BjuB006276, BjuB037910, and BjuA021658) had distinct temporal expression patterns during stem swelling, indicating that they possessed diverse regulatory functions during the developmental process. These results contribute to our understanding on the GRAS gene family and provide the basis for further investigations on the evolution and functional characterization of GRAS genes

    Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride

    Get PDF
    The high processing cost, poor mechanical properties and moderate performance of BiTe–based alloys used in thermoelectric devices limit the cost-effectiveness of this energy conversion technology. Towards solving these current challenges, in the present work, we detail a low temperature solution-based approach to produce BiTe-CuTe nanocomposites with improved thermoelectric performance. Our approach consists in combining proper ratios of colloidal nanoparticles and to consolidate the resulting mixture into nanocomposites using a hot press. The transport properties of the nanocomposites are characterized and compared with those of pure BiTe nanomaterials obtained following the same procedure. In contrast with most previous works, the presence of CuTe nanodomains does not result in a significant reduction of the lattice thermal conductivity of the reference BiTe nanomaterial, which is already very low. However, the introduction of CuTe yields a nearly threefold increase of the power factor associated to a simultaneous increase of the Seebeck coefficient and electrical conductivity at temperatures above 400 K. Taking into account the band alignment of the two materials, we rationalize this increase by considering that CuTe nanostructures, with a relatively low electron affinity, are able to inject electrons into BiTe, enhancing in this way its electrical conductivity. The simultaneous increase of the Seebeck coefficient is related to the energy filtering of charge carriers at energy barriers within BiTe domains associated with the accumulation of electrons in regions nearby a CuTe/BiTe heterojunction. Overall, with the incorporation of a proper amount of CuTe nanoparticles, we demonstrate a 250% improvement of the thermoelectric figure of merit of BiTeThis work was supported by the European Regional Development Funds and by the Generalitat de Catalunya through the project 2017SGR1246. Y.Z, C.X, M.L, K.X and X.H thank the China Scholarship Council for the scholarship support. MI acknowledges financial support from IST Austria. YL acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 754411. ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327 and the Spanish MINECO project ENE2017-85087-C3. ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (grant no. SEV-2017-0706) and is funded by the CERCA Program/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program
    • …
    corecore