620 research outputs found

    APLIKASI TEORI PERILAKU TERENCANA: NIAT MELAKUKAN PHYSICAL EXERCISE (LATIHAN FISIK) PADA REMAJA DI SURABAYA

    Get PDF
    Alasan utama untuk rnengangkat topik ini dalarn penelitian ia1ah penulis berrnaksud untuk rneneliti variabel-variabel yang rnelatarbelakangi perilaku physical exercise yang dilakukan remaja di Surabaya. Tujuannya, peneliti ingin rnenguji apakah ada hubungan antara attitude towards behavior (A TB), subjective norm (SN), dan perceived behavioral control (PBC), baik secara bersama-sama maupun secara parsial, dengan niat berperilaku physical exercise (latihan fisik) pada remaja di Surabaya. Metode angket digunakan dalarn penelitian ini, rnenggunakan teknik penskalaan sernantik diferensial. Rernaja baik pria dan wanita (N=336) di kota Surabaya berpartisipasi dalarn penelitian ini. Hasil uji hipotesis rnenujukkan bahwa : {a). Terdapat hubungan yang signifikan antara ATB, SN, dan PBC, secara bersarna-sarna terhadap niat rnelakukan Physical exersice pada remaja (F = 14.233; p = 0,000). Hasil korelasi parsial menunjukkan ATB, dan SN menjadi prediktor paling kuat terhadap niat melaku.kan Physical Exercise, sedangkan PBC tidak

    A realistic meteorological assessment of perennial biofuel crop deployment: a Southern Great Plains perspective

    Get PDF
    Utility of perennial bioenergy crops (e.g., switchgrass and miscanthus) offers unique opportunities to transition toward a more sustainable energy pathway due to their reduced carbon footprint, averted competition with food crops, and ability to grow on abandoned and degraded farmlands. Studies that have examined biogeophysical impacts of these crops noted a positive feedback between near-surface cooling and enhanced evapotranspiration (ET), but also potential unintended consequences of soil moisture and groundwater depletion. To better understand hydrometeorological effects of perennial bioenergy crop expansion, this study conducted high-resolution (2-km grid spacing) simulations with a state-of-the-art atmospheric model (Weather Research and Forecasting system) dynamically coupled to a land surface model. We applied the modeling system over the Southern Plains of the United States during a normal precipitation year (2007) and a drought year (2011). By focusing the deployment of bioenergy cropping systems on marginal and abandoned farmland areas (to reduce the potential conflict with food systems), the research presented here is the first realistic examination of hydrometeorological impacts associated with perennial bioenergy crop expansion. Our results illustrate that the deployment of perennial bioenergy crops leads to widespread cooling (1–2 °C) that is largely driven by an enhanced reflection of shortwave radiation and, secondarily, due to an enhanced ET. Bioenergy crop deployment was shown to reduce the impacts of drought through simultaneous moistening and cooling of the near-surface environment. However, simulated impacts on near-surface cooling and ET were reduced during the drought relative to a normal precipitation year, revealing differential effects based on background environmental conditions. This study serves as a key step toward the assessment of hydroclimatic sustainability associated with perennial bioenergy crop expansion under diverse hydrometeorological conditions by highlighting the driving mechanisms and processes associated with this energy pathway.This work was funded by NSF Grant EAR-1204774S

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    MD-2 is required for disulfide HMGB1-dependent TLR4 signaling

    Get PDF
    Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2–deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2–HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4–MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness

    Report of the 4th World Climate Research Programme International Conference on Reanalyses

    Get PDF
    The 4th WCRP International Conference on Reanalyses provided an opportunity for the international community to review and discuss the observational and modelling research, as well as process studies and uncertainties associated with reanalysis of the Earth System and its components. Characterizing the uncertainty and quality of reanalyses is a task that reaches far beyond the international community of producers, and into the interdisciplinary research community, especially those using reanalysis products in their research and applications. Reanalyses have progressed greatly even in the last 5 years, and newer ideas, projects and data are coming forward. While reanalysis has typically been carried out for the individual domains of atmosphere, ocean and land, it is now moving towards coupling using Earth system models. Observations are being reprocessed and they are providing improved quality for use in reanalysis. New applications are being investigated, and the need for climate reanalyses is as strong as ever. At the heart of it all, new investigators are exploring the possibilities for reanalysis, and developing new ideas in research and applications. Given the many centres creating reanalyses products (e.g. ocean, land and cryosphere research centres as well as NWP and atmospheric centers), and the development of new ideas (e.g. families of reanalyses), the total number of reanalyses is increasing greatly, with new and innovative diagnostics and output data. The need for reanalysis data is growing steadily, and likewise, the need for open discussion and comment on the data. The 4th Conference was convened to provide a forum for constructive discussion on the objectives, strengths and weaknesses of reanalyses, indicating potential development paths for the future

    Anticipating and Adapting to the Future Impacts of Climate Change on the Health, Security and Welfare of Low Elevation Coastal Zone (LECZ) Communities in Southeastern USA

    Get PDF
    Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industries

    The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

    Get PDF
    Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops

    Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity).</p> <p>Results</p> <p>To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties.</p> <p>Conclusions</p> <p>Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.</p
    • …
    corecore