493 research outputs found

    A mathematical model of tumour & blood pHe regulation: The HCO-3/CO2 buffering system

    Get PDF
    Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the View the MathML source buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe

    Canadian Initiatives to Prevent Hypertension by Reducing Dietary Sodium

    Get PDF
    Hypertension is the leading risk for premature death in the world. High dietary sodium is an important contributor to increased blood pressure and is strongly associated with other important diseases (e.g., gastric cancer, calcium containing kidney stones, osteoporosis, asthma and obesity). The average dietary sodium intake in Canada is approximately 3400 mg/day. It is estimated that 30% of hypertension, more than 10% of cardiovascular events and 1.4 billion dollars/year in health care expenses are caused by this high level of intake in Canada. Since 2006, Canada has had a focused and evolving effort to reduce dietary sodium based on actions from Non Governmental Organizations (NGO), and Federal and Provincial/Territorial Government actions. NGOs initiated Canadian sodium reduction programs by developing a policy statement outlining the health issue and calling for governmental, NGO and industry action, developing and disseminating an extensive health care professional education program including resources for patient education, developing a public awareness campaign through extensive media releases and publications in the lay press. The Federal Government responded by striking a Intersectoral Sodium Work Group to develop recommendations on how to implement Canada’s dietary reference intake values for dietary sodium and by developing timelines and targets for foods to be reduced in sodium, assessing key research gaps with funding for targeted dietary sodium based research, developing plans for public education and for conducting evaluation of the program to reduce dietary sodium. While food regulation is a Federal Government responsibility Provincial and Territorial governments indicated reducing dietary sodium needed to be a priority. Federal and Provincial Ministers of Health have endorsed a target to reduce the average consumption of sodium to 2300 mg/day by 2016 and the Deputy Ministers of Health have tasked a joint committee to review the recommendations of the Sodium Work Group and report back to them

    Exposure to Maternal Diabetes Induces Salt-Sensitive Hypertension and Impairs Renal Function in Adult Rat Offspring

    Get PDF
    OBJECTIVE—Epidemiological and experimental studies have led to the hypothesis of fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. We have previously demonstrated in the rat that in utero exposure to maternal diabetes impairs renal development leading to a reduction in nephron number. Little is known on the long-term consequences of in utero exposure to maternal diabetes. The aim of the study was to assess, in the rat, long-term effects of in utero exposure to maternal diabetes on blood pressure and renal function in adulthood

    Calcium Channel Blockers, More than Diuretics, Enhance Vascular Protective Effects of Angiotensin Receptor Blockers in Salt-Loaded Hypertensive Rats

    Get PDF
    The combination therapy of an angiotensin receptor blocker (ARB) with a calcium channel blocker (CCB) or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP) were divided into 6 groups, and they were orally administered (1) vehicle, (2) olmesartan, an ARB, (3) azelnidipine, a CCB, (4) hydrochlorothiazide, a diuretic, (5) olmesartan combined with azelnidipine, or (6) olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS) pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Toward quantitative proteomics of organ substructures: implications for renal physiology

    Full text link
    Organs are complex structures that consist of multiple tissues with different levels of gene expression. To achieve comprehensive coverage and accurate quantitation data, organs ideally should be separated into morphologic and/or functional substructures before gene or protein expression analysis. However, because of complex morphology and elaborate isolation protocols, to date this often has been difficult to achieve. Kidneys are organs in which functional and morphologic subdivision is especially important. Each subunit of the kidney, the nephron, consists of more than 10 subsegments with distinct morphologic and functional characteristics. For a full understanding of kidney physiology, global gene and protein expression analyses have to be performed at the level of the nephron subsegments; however, such studies have been extremely rare to date. Here we describe the latest approaches in quantitative high-accuracy mass spectrometry-based proteomics and their application to quantitative proteomics studies of the whole kidney and nephron subsegments, both in human beings and in animal models. We compare these studies with similar studies performed on other organ substructures. We argue that the newest technologies used for preparation, processing, and measurement of small amounts of starting material are finally enabling global and subsegment-specific quantitative measurement of protein levels in the kidney and other organs. These new technologies and approaches are making a decisive impact on our understanding of the (patho)physiological processes at the molecular level

    Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function

    Get PDF
    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression

    Normalisation to Blood Activity Is Required for the Accurate Quantification of Na/I Symporter Ectopic Expression by SPECT/CT in Individual Subjects

    Get PDF
    The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used 99mTc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to ‘noisy’, and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy
    corecore